Abstract: A programmable fuse element disposed between integrated circuit elements that may be selectively joined during the manufacture or programming of an integrated circuit. The fuse element is a normally open fuse that electrically isolates the integrated circuit elements. The fuse element is comprised of a central area of conductive material insulated from the integrated circuit elements by areas of dielectric material. The integrated circuit elements and the fuse element are disposed on a thin oxide layer covering a semiconductor substrate to prevent those elements from shorting to the semiconductor substrate or to each other via the semiconductor substrate. A protective dielectric layer may be deposited over both the fuse element and the integrated circuit elements during the manufacture of the overall integrated circuit. A laser beam is used to burn through the protective layer and melts both the conductive material and the dielectric material that form the fuse element.
Abstract: An optically-triggered silicon controlled rectifier (SCR) (21) having a number of semiconductor layers (23, 24, 31) diffused into an N type substrate (22). Specifically, the SCR is formed by diffusing a first P+ layer (23) into an upper surface of the substrate. Then, an N+ layer (24) is diffused into a portion of an upper surface of the first P+ layer. An oxide layer (25) which is permeable to optical radiation is formed on the first P+ layer. A conductive cathode terminal (26) is then deposited on the N+ layer. Therefore, a trench (30) is etched in the lower surface of the substrate. The trench is defined by a depth and a surface. A second P+ layer (31) is diffused into the surface of the trench. The depth of the trench substantially defines a spacing between the first and second P+ layers. The chip is soldered onto a pedestal (33) formed on a lead frame (34). The solder is deposited in the trench and contacts the second P+ layer to form an anode terminal (36).
Abstract: Illumination apparatus for use in localized illumination applications, such as an automobile dashboard. The apparatus includes a light emitting diode mounted on a metallized circuit board; a TIR lens mounted over the light emitting diode to collect light emitted from the light emitting diode and to direct the light in a single direction; and a light pipe disposed over the light emitting diode and the TIR lens. The light pipe has walls extending from the circuit board to a plane above the circuit board such that directed light from the TIR lens is channeled through the light pipe to the plane. The apparatus can also include a cover disposed in the plane over the light pipe. The cover may be integrally molded to the light pipe and have an icon configured therein, such that the icon is illuminated by the light from the light emitting diode.
Abstract: A method of illuminating an object by capturing light from a light source with a TIR lens, redirecting the captured light from the light source in a single direction using the TIR lens, and channeling the redirected light through a light pipe to a plane at or before the object to maximize brightness of the light from the light source at the plane.