Abstract: A numerical controller of a processing machine determines corresponding setpoint axis values based on setpoint position values for position-regulated axes operating on machine elements. Before controlling the position-regulated axes, volumes to be occupied by protection bodies associated with the machine elements, a workpiece and a tool are defined and it is checked whether the protection bodies remain disjoint while controlling the position-regulated axes. Depending on the result of the checks, the controller either controls the position-regulated axes in accordance with the setpoint position values or merely executes an error response without control. The controller contains a position error field which specifies for any given setpoint axis value an actual position the tool relative to the workpiece.
Abstract: A method for training a segmentation correction model includes performing an iterative model training process over a plurality of iterations. During each iteration, an initial segmentation estimate for an image is provided to a human annotators via an annotation interface. The initial segmentation estimate identifies one or more anatomical areas of interest within the image. Interactions with the annotation interface are automatically monitored to record annotation information comprising one or more of (i) segmentation corrections made to the initial segmentation estimate by the annotators via the annotation interface, and (ii) interactions with the annotation interface performed by the annotators while making the corrections. A base segmentation machine learning model is trained to automatically create a base segmentation based on the image. Additionally, a segmentation correction machine learning model is trained to automatically perform the segmentation corrections based on the image.
Type:
Grant
Filed:
March 27, 2017
Date of Patent:
July 30, 2019
Assignee:
Siemens Healthcare GmbH
Inventors:
Zhoubing Xu, Carol L. Novak, Atilla Peter Kiraly
Abstract: An overlay of anatomy is created for a fluoroscopy image. Anatomy detected in angiographic images is used to locate anatomy in the fluoroscopy image. For each cardiac phase, the anatomy is detected multiple times from different cardiac cycles using angiographic images. The fluoroscopic overlay for each cardiac phase is formed from a combination of angiographic candidates fit from the different cardiac cycles to the fluoroscopic image. To further enhance the combination, prediction of the anatomy position from one phase to the next phase is used.
Abstract: The present invention is in the field of automated analyzers and relates to a method for transferring a liquid volume in an analyzer. This involves the tip of a pipetting needle touching a wall of a tilted reaction vessel during the dispensing of liquid.
Abstract: A computer-implemented method of monitoring dynamics of patient brain state during neurosurgical procedures includes receiving a plurality of brain response images acquired using a functional MRI scan of a patient over a plurality of time points and selecting a plurality of image features from the brain response images. One or more recurrent neural network (RNN) model are used to directly estimate one or more brain state measurements at each time point based on the image features. Once estimated, the brain state measurements are presented on a display.
Abstract: A superconducting magnet coil arrangement has multiple superconducting coils and at least one of the superconducting coils is provided with a secondary coil of insulated resistive wire mechanically attached to a surface of the superconducting coil.
Type:
Grant
Filed:
February 4, 2014
Date of Patent:
July 30, 2019
Assignee:
Siemens Healthcare Limited
Inventors:
Eugene Astra, Hugh Alexander Blakes, Peter Jonathan Davis, Yunxin Gao, Graham Hutton, Matthew John Longfield
Abstract: In a method for heating an operating agent for a rail vehicle, particularly for heating a reducing agent for the after-treatment of exhaust gas, a coolant liquid is pumped through a cooling circuit of the internal combustion engine by a pump when an operating agent heating system is in an operating mode. In the operating mode, the coolant liquid is pumpable through a main heating circuit by of the pump in order to heat the operating agent in a reservoir. When the operating agent heating system is in a preheating mode, the main heating circuit is divided into two sub-circuits of a preheating circuit, the flow being able to pass through both of the sub-circuits.
Abstract: Systems and methods are provided for determining a synthetic electron density map based on at least one MR image dataset and based on at least one soft tissue image structure and one bone image structure determined in the synthetic electron density map. The soft tissue image structure and the bone image structure may be compared with the corresponding structures in the MR image dataset. From a correction of the first soft tissue image structure and/or of the bone image structure is based on the comparison, a corrected synthetic electron density map is determined.
Abstract: A high-voltage apparatus contains an internal conductor, an insulating body which surrounds the internal conductor along its longitudinal direction and has insulating layers which are composed of a synthetic material which is impregnated with a resin, and also electrically conductive control inserts for field control which are arranged concentrically around the internal conductor and are spaced apart from one another by the insulating layers. At least one of the control inserts is a contact insert which is electrically connected to the internal conductor by a contact-making device. The contact-making device has a contact element which is composed of electrically conductive material and is electrically connected to the contact insert. The contact element is fixed by adhesive bonding to a conductive substrate which is in electrical contact with the internal conductor.
Type:
Grant
Filed:
December 16, 2015
Date of Patent:
July 30, 2019
Assignee:
Siemens Aktiengesellschaft
Inventors:
Christian Paul, Tim Schnitzler, Joachim Titze
Abstract: An environmental control device (100, 200), such as a thermostat, is disclosed. The environmental control device (100, 200) has one or more terminals (104, 104a-104i) for connecting to an HVAC system (14) and performs over current management of the terminal (104, 104a-104i) when connected to the HVAC system (14).
Type:
Grant
Filed:
September 30, 2014
Date of Patent:
July 30, 2019
Assignee:
Siemens Schweiz AG
Inventors:
Pei Jin Li, Zhan Jun Ding, William J. Fenske, Michael S. Schuler
Abstract: Embodiments are directed to a combination of an automation system that continuously tracks the identity and positions of all of its pucks with a single sample identification station and covers/interlocks in order to provide sample chain of custody without the need to re-identify the sample at points of interaction (aspiration, de-capping, etc.). This eliminates the need to have sample identification stations at each interaction point. This reduction of hardware allows the system to be cheaper, smaller, and more reliable. It also allows not only the automation system, but also existing pre-analytical/analytical equipment connected to the automation system, to run more efficiently.
Type:
Application
Filed:
July 19, 2017
Publication date:
July 25, 2019
Applicant:
Siemens Healthcare Diagnostics Inc.
Inventors:
Benjamin S. Pollack, Colin Mellars, Baris Yagci
Abstract: A valve may include: a valve body; a valve member in the body, movable between closed and open, comprising a first orifice, a second orifice, a main conduit between them, and a bypass in fluid communication with the main conduit. The bypass includes a first portion with a first cross-section area and a second portion with a second cross-section area different from the first cross-section area. The valve body comprises a compensation chamber having a compensation orifice. The bypass comprises an outer bypass orifice defined by and disposed on the outer surface of the valve member. The valve member comprises an internal orifice situated between the bypass and the main conduit. In the closed position, the inlet is in fluid communication with the compensation chamber via the outer bypass orifice, the bypass, the internal orifice of the valve member, the main conduit, the first orifice, and the compensation orifice.
Abstract: The invention relates to a stator (8) for an electric rotating machine (2), which stator has a laminated stator core (16) having coil bars (20) and has at least one stator winding head board (24) having an insulating main body (28). In order to reduce the axial length of the stator (8), according to the invention, conducting tracks (26) are integrated into the insulating main body (28), wherein the at least one stator winding head board (24) lies on an end face (23) of the laminated stator core (16) and wherein the conducting tracks (26) are integrally bonded to the coil bars (20).
Abstract: One embodiment provides systems and methods for masking the effects of a flash on an operator including: a drawer system configured to receive a tray comprising one or more laboratory containers, wherein upon receiving the tray, the drawer system centers the tray underneath an image capture device; a flash device configured to activate, based on said centering, to illuminate the one or more laboratory containers; and an image capture device configured to capture an illuminated image of the one or more laboratory containers.
Abstract: Disclosed is a method for maintaining a mechanical apparatus, with the surface of a component thereof being damaged. In an embodiment, the method includes: taking at least one photograph for at least one component; processing the photograph to obtain geometric data of the component; comparing the data with a predetermined standard; and indicating the component meeting the predetermined standard.
Abstract: In a method and magnetic resonance (MR) apparatus for creating an MR 3D image dataset, spin echo sequences are used to acquire two raw datasets that are each undersampled, wherein the excitation pulses or the refocusing pulses radiated in the data acquisitions have an opposite phase for the two raw datasets. These two raw datasets are combined into a combined 3D raw dataset that is not undersampled, and a weighting matrix is calculated for use in calculating the raw data points that were not acquired in the first raw dataset and the raw data points not acquired in the second raw dataset. A first complete raw dataset and second complete raw dataset are thereby calculated, which are then combined. The MR 3D data is then reconstructed from tis combined raw dataset.