Patents Assigned to SIGMASENSE, LLC.
-
Publication number: 20220365652Abstract: A drive sense circuit comprises an analog front-end. The analog front-end generates an analog drive sense signal based on an analog reference signal that has a magnitude that is substantially less than a supply rail power of the drive sense circuit. When the drive sense circuit is coupled to a load, the analog front end drives the load with the analog drive-sense signal and detects an analog signal variation in the analog drive-sense signal based on a characteristic of the load.Type: ApplicationFiled: July 26, 2022Publication date: November 17, 2022Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Publication number: 20220365140Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.Type: ApplicationFiled: July 27, 2022Publication date: November 17, 2022Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Patent number: 11500024Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.Type: GrantFiled: May 26, 2021Date of Patent: November 15, 2022Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Publication number: 20220357762Abstract: A method for execution by one or more processing modules to configure a programmable drive-sense unit (DSU) includes determining one or more load sensing objectives based on sensing a load using the DSU that is configured to drive and simultaneously to sense the load via a single line. The method further includes determining one or more data processing objectives associated with sensing the load. The method further includes determining desired characteristics for the output data associated with sensing the load. The method further includes determining operational parameters for the DSU based on one or more of the load sensing objectives, the data processing objectives, and the desired characteristics for the output data. The method further includes configuring the DSU based on the operational parameters to achieve the one or more load sensing objectives.Type: ApplicationFiled: July 21, 2022Publication date: November 10, 2022Applicant: SigmaSense, LLC.Inventors: Richard Stuart Seger, JR., Daniel Keith Van Ostrand, Patrick Troy Gray, Michael Shawn Gray, Timothy W. Markison
-
Publication number: 20220357828Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).Type: ApplicationFiled: July 26, 2022Publication date: November 10, 2022Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Patent number: 11493559Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.Type: GrantFiled: August 31, 2021Date of Patent: November 8, 2022Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Patent number: 11494006Abstract: An e-pen includes e-pen sensor electrodes (including a first and a second e-pen sensor electrode) and drive-sense circuits (DSCs) (including a first DSC and a second DSC. The first DSC drives a first e-pen signal having a first frequency via a first single line coupling to the first e-pen sensor electrode and simultaneously senses, via the first single line, the first e-pen signal. Based on e-pen/touch sensor device interaction, the first e-pen signal is coupled into at least one touch sensor electrode of the touch sensor device. The first DSC process the first e-pen signal to generate a first digital signal representative of a first electrical characteristic of the first e-pen sensor electrode. Similarly, the second DSC drives a second e-pen signal having a second frequency via a second single line coupling to the second e-pen sensor electrode and simultaneously senses, via the second single line, the second e-pen signal.Type: GrantFiled: August 30, 2021Date of Patent: November 8, 2022Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr., Michael Shawn Gray, Kevin Joseph Derichs
-
Patent number: 11494032Abstract: A capacitive touch screen display operates by: receiving a plurality of sensed signals indicating variations in mutual capacitance associated with a plurality of cross points formed by a plurality of electrodes of a sensor layer adjacent to a compressible dielectric layer adjacent; generating capacitance image data associated with the plurality of cross points that includes positive capacitance variation data corresponding to positive variations of the capacitance image data from a nominal value and negative capacitance variation data corresponding to negative variations of the capacitance image data from the nominal value; and processing the negative capacitance variation data to determine a compressive touch condition of the touch screen display by a non-conductive object.Type: GrantFiled: January 19, 2022Date of Patent: November 8, 2022Assignee: SigmaSense, LLC.Inventors: Richard Stuart Seger, Jr., Michael Shawn Gray, Daniel Keith Van Ostrand, Hans Howard Eilers, Kevin Joseph Derichs, Sarah Marie Derichs, Patrick Troy Gray, Phuong Huynh
-
Publication number: 20220342513Abstract: A method executable by a touch screen processing module of a touch screen includes detecting, via one or more drive-sense circuits of the touch screen, one or more changes in electrical characteristics of one or more electrodes of the touch screen, determining an interface area of the touch screen based on location of the one or more electrodes, associating the interface area with a passive pen, and interpreting the one or more changes in the electrical characteristics as one or more impedance values. When the one or more impedance values is in a first range, the method further includes interpreting the one or more impedance values as a touch. When the one or more impedance values is in a second range, the method further includes interpreting the one or more impedance values as a pressure measurement.Type: ApplicationFiled: April 23, 2022Publication date: October 27, 2022Applicant: SigmaSense, LLC.Inventor: Kevin Joseph Derichs
-
Publication number: 20220342505Abstract: A passive pen for interaction with a touch screen, wherein the passive pen includes a housing, a conductive section, a fixed conductive z-direction mounting section coupled to the conductive section, a moveable conductive z-direction mounting section, a variable capacitor positioned between the fixed conductive z-direction mounting section and the moveable conductive z-direction mounting section, and a conductive tip coupled to the moveable conductive z-direction mounting section. When the user is in contact with the conductive section, a capacitive connection is established between the conductive section and the user's body. The variable capacitor has a compressive property. Pressure on the conductive tip creates a z-direction force operable to move the moveable conductive z-direction mounting section in the z-direction. Movement of the moveable conductive z-direction mounting section compresses the variable capacitor against the fixed conductive z-direction mounting section.Type: ApplicationFiled: April 23, 2022Publication date: October 27, 2022Applicant: SigmaSense, LLC.Inventor: Kevin Joseph Derichs
-
Patent number: 11481059Abstract: A touch screen display includes a display, a video graphics processing module, electrodes, and drive-sense circuits. The electrodes integrated into the display, which is operable to render frames of data into visible images. The video graphics processing module is operably coupled to generate the frames of data. The drive-sense circuits, when enabled and concurrent with the display rendering the frames of data into the visible images, monitor sensor signals on the electrodes. A sensor signal includes a drive signal component and a receive signal component. The drive-sense circuits generate the drive signal components of the sensor signals and the receive signal components are representation of impedances of the electrodes. A change in impedance is indicative of a proximal touch to the touch screen display.Type: GrantFiled: August 26, 2021Date of Patent: October 25, 2022Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Publication number: 20220331587Abstract: A pacemaker system includes a drive-sense circuit (DSC) operably coupled to a pacemaker lead. The DSC generates a pace signal including electrical impulses based on a reference signal. The DSC provides the pace signal via the pacemaker lead to an electrically responsive portion of a cardiac conductive system of a subject to facilitate cardiac operation of a cardiovascular system of the subject. The DSC senses, via the pacemaker lead, cardiac electrical activity of the cardiovascular system of the subject that is generated in response to the pace signal and electrically coupled into the pacemaker lead and generates a digital signal that is representative of the cardiac electrical activity of the cardiovascular system of the subject that is sensed via the pacemaker lead. The DSC provides digital information to one or more processing modules that includes and/or is coupled to memory and that provide the reference signal to the DSC.Type: ApplicationFiled: June 30, 2022Publication date: October 20, 2022Applicant: SIGMASENSE, LLC.Inventors: John Christopher Price, Shayne X. Short, Timothy W. Markison
-
Publication number: 20220334186Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.Type: ApplicationFiled: June 29, 2022Publication date: October 20, 2022Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Publication number: 20220334556Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.Type: ApplicationFiled: June 28, 2022Publication date: October 20, 2022Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Patent number: 11474502Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.Type: GrantFiled: May 28, 2021Date of Patent: October 18, 2022Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Patent number: 11474634Abstract: A touch sensor device includes a first panel, a second panel, and a drive-sense circuit (DSC). The first panel that includes first electrodes arranged in a first direction and second electrodes arranged in a second direction. The second panel includes third electrodes arranged in a third direction and fourth electrodes arranged in a fourth direction. The DSC is operably coupled via a single line to a coupling of a first electrode of the first electrodes and a first electrode of the third electrodes. The DSC is configured to provide the signal, which is generated based on a reference signal, via the single line to the coupling and simultaneously to sense the signal via the single line. The DSC generates a digital signal representative of the at least one electrical characteristic associated with the first electrode of the first electrodes and/or the first electrode of the third electrodes.Type: GrantFiled: November 30, 2021Date of Patent: October 18, 2022Assignee: SIGMASENSE, LLC.Inventor: Kevin Joseph Derichs
-
Patent number: 11474685Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).Type: GrantFiled: June 30, 2021Date of Patent: October 18, 2022Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Patent number: 11476867Abstract: A batteryless wireless sensor system includes a data acquisition system, a radio frequency (RF) transceiver, and a batteryless wireless sensor device. The RF transceiver is in communication with the data acquisition system, transmits a RF signal, and receives sensor data and provide the sensor data to the data acquisition system. The batteryless wireless sensor device includes a RF transmitter, an analog to digital converter (ADC), and a sensor. The batteryless wireless sensor harvests energy from the RF signal and generates a DC signal based on the energy harvested from the RF signal, powers up and operates the ADC and the sensor based on the DC signal, and generates sensor data. The batteryless wireless sensor then transmits the sensor data via the RF transmitter to the RF transceiver. In certain examples, the ADC is implemented as a current mode ADC.Type: GrantFiled: October 29, 2021Date of Patent: October 18, 2022Assignee: SIGMASENSE, LLC.Inventor: Phuong Huynh
-
Publication number: 20220326804Abstract: A touch sensor device includes a first panel, a second panel, and a drive-sense circuit (DSC). The first panel that includes first electrodes arranged in a first direction and second electrodes arranged in a second direction. The second panel includes third electrodes arranged in a third direction and fourth electrodes arranged in a fourth direction. The DSC is operably coupled via a single line to a coupling of a first electrode of the first electrodes and a first electrode of the third electrodes. The DSC is configured to provide the signal, which is generated based on a reference signal, via the single line to the coupling and simultaneously to sense the signal via the single line. The DSC generates a digital signal representative of the at least one electrical characteristic associated with the first electrode of the first electrodes and/or the first electrode of the third electrodes.Type: ApplicationFiled: June 29, 2022Publication date: October 13, 2022Applicant: SIGMASENSE, LLC.Inventor: Kevin Joseph Derichs
-
Publication number: 20220326827Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).Type: ApplicationFiled: June 27, 2022Publication date: October 13, 2022Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.