Patents Assigned to SIGMASENSE, LLC.
-
Publication number: 20220263347Abstract: A device operative to transfer power wirelessly includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s). The DSC generates a drive signal based on a reference signal and provides the drive signal to a first coil via a single line and via a resonating capacitor, and simultaneously senses the drive signal via the single line, to facilitate electromagnetic coupling to a second coil to transfer power wirelessly to another device. The DSC also detects electrical characteristic(s) of the drive signal. The processing module(s) generates the reference signal and processes the digital signal to determine the electrical characteristic(s) of the drive signal. In some examples, the processing module(s) adapts the reference signal based on detection of the other device (e.g., based on interpreting the electrical characteristic(s) of the drive signal).Type: ApplicationFiled: November 17, 2021Publication date: August 18, 2022Applicant: SIGMASENSE, LLC.Inventors: John Christopher Price, Daniel Keith Van Ostrand, Phuong Huynh
-
Publication number: 20220253171Abstract: A touch sensor device includes a first panel, a second panel, and a drive-sense circuit (DSC). The first panel that includes first electrodes arranged in a first direction and second electrodes arranged in a second direction. The second panel includes third electrodes arranged in a third direction and fourth electrodes arranged in a fourth direction. The DSC is operably coupled via a single line to a coupling of a first electrode of the first electrodes and a first electrode of the third electrodes. The DSC is configured to provide the signal, which is generated based on a reference signal, via the single line to the coupling and simultaneously to sense the signal via the single line. The DSC generates a digital signal representative of the at least one electrical characteristic associated with the first electrode of the first electrodes and/or the first electrode of the third electrodes.Type: ApplicationFiled: February 28, 2022Publication date: August 11, 2022Applicant: SIGMASENSE, LLC.Inventor: Kevin Joseph Derichs
-
Publication number: 20220253359Abstract: A method for execution by an input/output (IO) control module of an integrated circuit (IC) includes determining whether a programmable IO interface module is for dynamic or static use. The programmable IO interface module includes a configurable front-end module and a configurable back-end module. When the programmable IO interface module is for the dynamic use, determining to configure the programmable IO interface module as the dynamic use of a configuration of a plurality of configurations. The plurality of configurations includes a bidirectional interface, an input, an output, a concurrent drive and sense interface, and a concurrent transmit-receive interface. The method further includes configuring the front-end module in accordance with the configuration, configuring the back-end module in accordance with the configuration, and determining whether to change the configuration to another configuration of the plurality of configurations.Type: ApplicationFiled: April 27, 2022Publication date: August 11, 2022Applicant: SigmaSense, LLC.Inventors: Richard Stuart Seger, JR., Gerald Dale Morrison, Daniel Keith Van Ostrand, Patrick Troy Gray, Timothy W. Markison
-
Publication number: 20220253172Abstract: A channel driver circuit includes a differential module and a driver module. In some examples, the channel driver circuit also includes a sigma-delta module. The differential module receives, via a single node of a load, a channel driving signal that is provided to the load at the single node (e.g., that is based on an electrical characteristic of the load) and generates an analog error signal that is based on the channel driving signal and a reference signal. The driver module is coupled to the differential module and generates the channel driving signal based on the analog error signal or a digital error signal corresponding to the analog error signal and transmits the channel driving signal via the single node to the load. The channel driver circuit simultaneously transmits the channel driving signal to the load at the single node and senses the channel driving signal at the single node.Type: ApplicationFiled: April 28, 2022Publication date: August 11, 2022Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Phuong Huynh
-
Patent number: 11402990Abstract: A touch sensor system includes touch sensors, drive-sense circuits (DSCs), memory, and a processing module. A DSC drives a first signal via a single line coupling to a touch sensor and simultaneously senses, when present, a second signal that is uniquely associated with a user. The DSC processes the first signal and/or the second signal to generate a digital signal that is representative of an electrical characteristic of the touch sensor. The processing module executes operational instructions (stored in the memory) to process the digital signal to detect interaction of the user with the touch sensor and to determine whether the interaction of the user with the touch sensor compares favorably with authorization. When not authorized, the processing module aborts execution of operation(s) associated with the interaction of the user with the touch sensor. Alternatively, when authorized, the processing module facilitates execution of the operation(s).Type: GrantFiled: April 23, 2021Date of Patent: August 2, 2022Assignee: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Publication number: 20220236307Abstract: A load sensing circuit includes a load coupled to a load source having a load voltage that causes a load signal to flow through the load. A regulated sink circuit is coupled in series to a sink source and the load, and provides a sink voltage. A comparison circuit a reference signal that establishes a reference value of a second electrical characteristic at a reference input; a sense input is coupled to the load and to the regulated sink circuit. The regulated sink circuit regulates the first electrical characteristic of the load signal, based on a regulation signal, so that a sense value of the second electrical characteristic present at the sense input matches the reference value of the second electrical characteristic. A comparison signal is generated at an output of the comparison circuit, and indicates a difference between the sense value of the second electrical characteristic and the reference value of the second electrical characteristic.Type: ApplicationFiled: April 12, 2022Publication date: July 28, 2022Applicant: SigmaSense, LLC.Inventors: Patrick Troy Gray, Michael Shawn Gray, Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Timothy W. Markison
-
Patent number: 11397492Abstract: A capacitive touch screen display operates by: receiving a plurality of sensed signals indicating variations in mutual capacitance associated with a plurality of cross points formed by a plurality of electrodes; generating capacitance image data associated with the plurality of cross points that includes positive capacitance variation data corresponding to positive variations of the capacitance image data from a nominal value and negative capacitance variation data corresponding to negative variations of the capacitance image data from the nominal value; and processing the positive capacitive data and the negative capacitance data to determine a shape of an object on the touch screen display.Type: GrantFiled: June 11, 2021Date of Patent: July 26, 2022Assignee: SigmaSense, LLC.Inventors: Kevin Joseph Derichs, Hans Howard Eilers, Daniel Keith Van Ostrand, Sarah Marie Derichs, Richard Stuart Seger, Jr., Michael Shawn Gray, Patrick Troy Gray, Phuong Huynh
-
Publication number: 20220221518Abstract: A battery characterization system includes a drive-sense circuit (DSC), memory that stores operational instructions, and processing module(s) operably coupled to the DSC and the memory. Based on a reference signal, the DSC generates a charge signal, which includes an AC (alternating current) component, and provides the charge signal to a terminal of a battery via a single line and simultaneously to senses the charge signal via the single line to detect an electrical characteristic of the battery based on a response of the battery. The DSC generates a digital signal representative of the electrical characteristic of the battery. The processing module(s), based on the operational instructions, generate the reference signal to include a frequency sweep of the AC component of the charge signal (e.g.Type: ApplicationFiled: March 29, 2022Publication date: July 14, 2022Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Michael Frederick David Olley, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Publication number: 20220221532Abstract: A Hall effect sensor system includes a Hall effect sensor and a drive-sense circuit (DSC). The Hall effect sensor includes an input port to receive a DC (direct current) current signal and generates a Hall voltage based on exposure to a magnetic field. The DSC generates the DC current signal based on a reference signal and drives it via a single line that operably couples the DSC to the Hall effect sensor and simultaneously to sense the DC current signal via the single line. The DSC detects an effect on the DC current signal corresponding to the Hall voltage that is generated across the Hall effect sensor based on exposure of the Hall effect sensor to the magnetic field and generates a digital signal representative of the Hall voltage.Type: ApplicationFiled: March 28, 2022Publication date: July 14, 2022Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, JR.
-
Publication number: 20220224346Abstract: A high resolution analog to digital converter (ADC) with improved bandwidth senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. In addition, quantization noise is subtracted from the digital output signal thereby extending the operational bandwidth of the ADC. In certain examples, the operational bandwidth of the ADC extends up to 100 s of kHz (e.g., 200-300 kHz), or even higher.Type: ApplicationFiled: March 30, 2022Publication date: July 14, 2022Applicant: SIGMASENSE, LLC.Inventor: Phuong Huynh
-
Publication number: 20220221901Abstract: A computing device includes signal generation circuitry and also includes a location on the computing device that is operative to couple a signal generated by the signal generation circuitry into a user. For example, the computing device includes signal generation circuitry that generates a signal that includes information corresponding to a user and/or an application that is operative within the computing device. The signal generation circuitry couples the signal into the user from a location on the computing device based on a bodily portion of the user being in contact with or within sufficient proximity to the location on the computing device that facilitates coupling of the signal into the user. Also, the signal may be coupled via the user to another computing device that includes a touchscreen display that is operative to detect and receive the signal.Type: ApplicationFiled: March 30, 2022Publication date: July 14, 2022Applicant: SIGMASENSE, LLC.Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Shayne X. Short, Timothy W. Markison
-
Publication number: 20220221902Abstract: A computing device includes signal generation circuitry and also includes a location on the computing device that is operative to couple a signal generated by the signal generation circuitry into a user. For example, the computing device includes signal generation circuitry that generates a signal that includes information corresponding to a user and/or an application that is operative within the computing device. The signal generation circuitry couples the signal into the user from a location on the computing device based on a bodily portion of the user being in contact with or within sufficient proximity to the location on the computing device that facilitates coupling of the signal into the user. Also, the signal may be coupled via the user to another computing device that includes a touchscreen display that is operative to detect and receive the signal.Type: ApplicationFiled: March 31, 2022Publication date: July 14, 2022Applicant: SIGMASENSE, LLC.Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Shayne X. Short, Ph.D., Timothy W. Markison
-
Publication number: 20220216878Abstract: An analog to digital conversion circuit includes an analog to digital converter (ADC) circuit operable to convert an analog signal having an oscillation frequency into a first digital signal having a first data rate frequency. The analog signal includes a set of pure tone components. The first digital signal includes n 1-bit channels. The analog to digital conversion circuit further includes a digital decimation filtering circuit including n anti-aliasing filters operable to sample and filter the n 1-bit channels of the first digital signal to produce n second digital signals and n decimator circuits operable to decimate the n second digital signals to produce n third digital signals at a second data rate frequency. The analog to digital conversion circuit further includes a multiplexor operable to output the n third digital signals at the second data rate frequency on a single bus.Type: ApplicationFiled: December 23, 2021Publication date: July 7, 2022Applicant: SIGMASENSE, LLC.Inventors: Grant Howard McGibney, Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand
-
Publication number: 20220214661Abstract: An automated system includes transducers, at least one computing device, and at least one automated apparatus. The transducer(s) is/are driven and sensed using drive-sense circuit(s). A drives and senses drive and sense a transducer via a single line, generates a digital signal representative of a sensed analog feature to which the transducer is exposed, and transmits the digital signal to the computing device. The computing device receives digital signals from at least some of drive-sense circuits and process them in accordance with the automation process to produce an automated process command. The automated apparatus executes a portion of an automated process based on the automated process command.Type: ApplicationFiled: March 28, 2022Publication date: July 7, 2022Applicant: SIGMASENSE, LLC.Inventors: Patrick Troy Gray, Gerald Dale Morrison, Daniel Keith Van Ostrand, Richard Stuart Seger, Jr.
-
Patent number: 11374585Abstract: A high resolution analog to digital converter (ADC) with improved bandwidth senses an analog signal (e.g., a load current) to generate a digital signal. The ADC operates based on a load voltage produced based on charging of an element (e.g., a capacitor) by a load current and a digital to analog converter (DAC) output current (e.g., from a N-bit DAC). The ADC generates a digital output signal representative of a difference between the load voltage and a reference voltage. This digital output signal is used directly, or after digital signal processing, to operate an N-bit DAC to generate a DAC output current that tracks the load current. In addition, quantization noise is subtracted from the digital output signal thereby extending the operational bandwidth of the ADC. In certain examples, the operational bandwidth of the ADC extends up to 100s of kHz (e.g., 200-300 kHz), or even higher.Type: GrantFiled: April 27, 2021Date of Patent: June 28, 2022Assignee: SigmaSense, LLC.Inventor: Phuong Huynh
-
Patent number: 11374587Abstract: A batteryless wireless sensor system includes a data acquisition system, a radio frequency (RF) transceiver, and a batteryless wireless sensor device. The RF transceiver is in communication with the data acquisition system, transmits a RF signal, and receives sensor data and provide the sensor data to the data acquisition system. The batteryless wireless sensor device includes a RF transmitter, an analog to digital converter (ADC), and a sensor. The batteryless wireless sensor harvests energy from the RF signal and generates a DC signal based on the energy harvested from the RF signal, powers up and operates the ADC and the sensor based on the DC signal, and generates sensor data. The batteryless wireless sensor then transmits the sensor data via the RF transmitter to the RF transceiver. In certain examples, the ADC is implemented as a current mode ADC.Type: GrantFiled: February 25, 2021Date of Patent: June 28, 2022Assignee: SIGMASENSE, LLC.Inventor: Phuong Huynh
-
Patent number: 11372510Abstract: A touchscreen display includes one or more conductive layers that is implemented for a touch sensor and a common portion. The touch screen display may include as few as one conductive layer that is partitioned for both the touch sensor and the common portion in some examples. A first conductor of the touch sensor is composed of first segments(s) that are electrically connected, and a second conductor of the touch sensor is composed of a second segments(s) that are electrically connected. Also, the common portion includes a third conductor. Drive-sense circuits (DSCs) are respectively implemented to service the conductors and to generate digital signals representative of electrical characteristics of signals provided to those conductors. Processing module(s) is/are configured to execute operational instructions to process the digital signals to facilitate operation of the touchscreen display including to detect presence, interaction, and/or gestures, etc. of a user with the touchscreen display.Type: GrantFiled: November 1, 2019Date of Patent: June 28, 2022Assignee: SIGMASENSE, LLC.Inventors: Daniel Keith Van Ostrand, Patrick Troy Gray
-
Publication number: 20220201397Abstract: A noise canceling audio in/out device includes an audible in/out transducer operable to convert an audible noise signal to a noise signal and convert an audio transmit (TX) signal to an audible output signal. A transducer signal of the audible in/out transducer generated by the audio TX signal is affected by the noise signal. The noise canceling audio in/out device further includes a noise canceling circuit operable to convert a digital TX signal to a TX reference signal, compare the transducer signal with the TX reference signal to produce an analog comparison signal, where the analog comparison signal includes a representation of the audio TX signal and the noise signal, and regulate the transducer signal to substantially match the TX reference signal to remove the effect of the noise signal on the transducer signal.Type: ApplicationFiled: March 10, 2022Publication date: June 23, 2022Applicant: SIGMASENSE, LLC.Inventors: John Christopher Price, Phuong Huynh, Daniel Keith Van Ostrand, Patrick Troy Gray
-
Patent number: 11366780Abstract: A low voltage drive circuit includes a transmit digital to analog circuit that converts transmit digital data into analog outbound data by: generating a DC component; generating a first oscillation at a first frequency; generating a second oscillation at the first frequency; and outputting the first oscillation or the second oscillation on a bit-by-bit basis in accordance with the transmit digital data to produce an oscillating component, wherein the DC component is combined with the oscillating component to produce the analog outbound data, and wherein the oscillating component and the DC component are combined to produce the analog outbound data. A drive sense circuit drives an analog transmit signal onto a bus, wherein the analog outbound data is represented within the analog transmit signal as variances in loading of the bus at the first frequency and wherein analog inbound data is represented within an analog receive signal as variances in loading of the bus at a second frequency.Type: GrantFiled: July 29, 2021Date of Patent: June 21, 2022Assignee: SigmaSense, LLC.Inventors: Richard Stuart Seger, Jr., Daniel Keith Van Ostrand, Gerald Dale Morrison, Timothy W. Markison
-
Publication number: 20220187868Abstract: A computing device includes signal generation circuitry and also includes a location on the computing device that is operative to couple a signal generated by the signal generation circuitry into a user. For example, the computing device includes signal generation circuitry that generates a signal that includes information corresponding to a user and/or an application that is operative within the computing device. The signal generation circuitry couples the signal into the user from a location on the computing device based on a bodily portion of the user being in contact with or within sufficient proximity to the location on the computing device that facilitates coupling of the signal into the user. Also, the signal may be coupled via the user to another computing device that includes a touchscreen display that is operative to detect and receive the signal.Type: ApplicationFiled: February 28, 2022Publication date: June 16, 2022Applicant: SigmaSense, LLC.Inventors: Daniel Keith Van Ostrand, Richard Stuart Seger, JR., Shayne X. Short, Timothy W. Markison