Patents Assigned to Silc Technologies, Inc.
  • Patent number: 11467271
    Abstract: The LIDAR system includes a polarization component configured such that a first light signal traveling through the polarization component along an optical pathway has its polarization angle changed from a first polarization angle to a second polarization angle. The polarization angle is also configured such that a second light signal traveling the optical pathway in a direction that is the reverse of the direction traveled by the first light signal both enters and exits the polarization component in the second polarization angle. The LIDAR system is configured to output a LIDAR output signal that includes light from the first light signal. The LIDAR system is also configured to receive a LIDAR return signal that includes light from the LIDAR output signal after the LIDAR output signal was reflected by an object located outside of the LIDAR assembly.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: October 11, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Mehdi Asghari, Bradley Jonathan Luff
  • Patent number: 11467289
    Abstract: Systems and methods described herein are directed to computationally fast and accurate processing of data acquired by a remote imaging system, such as a Light Detection and Ranging system (LIDAR). Example embodiments describe processing of scanned target data based on performing a low-resolution Fourier Transform (FT) of a beat signal that may be a function of distance and/or velocity of objects associated with the scanned target. Various methods described herein can effectively convert the low-resolution FT data into high-resolution frequency domain data that can be used to accurately estimate a frequency of the beat signal. The system may use the beat signal frequency to determine the distance and/or velocity of the corresponding object and generate point-cloud information associated with a three-dimensional image construction of the scanned target.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: October 11, 2022
    Assignee: SiLC Technologies, Inc.
    Inventor: Majid Boloorian
  • Patent number: 11460642
    Abstract: An on-chip optical switch based on an echelle grating and a phase tuning element is described herein. The phase tuning element may change a refractive index of the material through which an optical signal propagates, thereby causing a change in the angle of propagation of the optical signal. By dynamically tuning the phase change element, the refractive index change may be controlled such that the deviation of the optical signal causes the optical signal to be focused on a particular coupling waveguide out of an array of coupling waveguides. The echelle grating with the active phase change element form a configurable optical switch capable of switching an optical signal between two or more coupling waveguides, that may be respectively connected to different optical signal processing pathways.
    Type: Grant
    Filed: January 9, 2021
    Date of Patent: October 4, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Shuren Hu, Amir Hanjani, Chen Chen, Mehdi Asghari, Bradley Jonathan Luff
  • Patent number: 11402505
    Abstract: The chip includes multiple steering waveguides positioned on a base. Each of the steering waveguides is being configured to carry an output signal. The steering waveguides each terminate at a facet. The facets are arranged such that output signals exit the chip through the facets and combine to form a LIDAR output signal. The chip also includes phase tuners positioned on at least a portion of the steering waveguides. Electronics operate the phase tuners so as to tune a phase differential between the output signals on adjacent steering waveguides. The electronics tune the phase differential so as to tune the direction that the LIDAR output signal travels away from the chip.
    Type: Grant
    Filed: January 23, 2019
    Date of Patent: August 2, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Dazeng Feng, Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 11385353
    Abstract: A LIDAR system that generates an outgoing LIDAR signal and multiple composite light signals that each carries a different channel and that each includes a contribution from a reference signal and a contribution from a comparative signal. The comparative signals each include light from the outgoing LIDAR signal that has been reflected by one or more objects located outside of the LIDAR system. The reference signals each include light from the outgoing LIDAR signal but exclude light that has been reflected by any object located outside of the LIDAR system. Electronics induce a frequency offset in the reference signals between a LIDAR data period and a channel period. The electronics use the composite signals generated during the LIDAR data period to generate LIDAR data and the composite signals generated during the channel period to associate the composite signals with the channel carried by the composite signal.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: July 12, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Majid Boloorian, Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
  • Patent number: 11381056
    Abstract: A light source has a resonant laser cavity with an optical grating and a waveguide that has a longitudinal axis. A portion of the longitudinal axis extends through the optical grating and serves as a grating axis. The laser cavity is configured to generate a laser signal that exits the laser cavity through the optical grating. The optical grating includes multiple perturbation structures that each causes a perturbation in an effective refractive index of the waveguide. The perturbation structures are staggered on the waveguide such that the perturbation structures that are adjacent to one another in a longitudinal direction are spaced apart in a transverse direction. The longitudinal direction is a direction parallel to the grating axis and the transverse direction is a direction transverse to the longitudinal direction.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: July 5, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Amir Ali Tavallaee, Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 11378691
    Abstract: A LIDAR system includes optics that generate a light signal that carries LIDAR data that indicates a distance and/or radial velocity between the optics and an object located outside of the LIDAR system. Electronics are configured to convert the light signal to a first data electrical signal and a second data electrical signal. The electronics perform a Complex Fourier transform on a complex signal such that the first data electrical signals acts a real component of the complex signal and the second data electrical signals acts as an imaginary component of the complex signal. The electronics determine the LIDAR data from an output of the Complex Fourier transform.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: July 5, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Majid Boloorian, Dazeng Feng
  • Patent number: 11378692
    Abstract: The system also includes components that combine contributions from different signals so as to generate composite signals that each carries the LIDAR data. Each composite signal is associated with a polarization state and is also a signal component selected from a quadrature component and an in-phase component. Each of the composite signals is associated with a different combination of polarization state and signal component. The system also includes electronics that combine the composite signals so as to generate an in-phase component of a complex LIDAR data signal and a quadrature component of the LIDAR data signal. The electronics extract the LIDAR data from the complex LIDAR data signal.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: July 5, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Majid Boloorian, Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 11360213
    Abstract: The chip includes multiple component assemblies that are each configured to generate and steer a direction of a LIDAR output signal that exits from the chip. The LIDAR output signals generated by different components assemblies have different wavelengths.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: June 14, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Mehdi Asghari, Dazeng Feng, Bradley Jonathan Luff
  • Patent number: 11353656
    Abstract: An on-chip polarizer for polarization filtering is described herein. The polarizer includes a rib waveguide on a supporting substrate, wherein the rib waveguide and the substrate may respectively comprise different materials. The rib waveguide may include a strip positioned over a slab of the same material. The strip may include a curvature along an optical propagation direction. In some embodiments, the curvature may include two bends that together form an approximately mirrored S-shaped curvature. The waveguide curvature may be configured to selectively guide an optical mode associated with a first polarization state while filtering-out another optical mode associated with a second polarization state. In some embodiments, the polarizer may allow propagation of a near lossless transverse magnetic (TM) mode while selectively radiating away a lossy transverse electric (TE) mode.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: June 7, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Shuren Hu, Mehdi Asghari
  • Patent number: 11262453
    Abstract: A LIDAR system includes a reference light source configured to generate an outgoing light signal that includes multiple reference channels that each has a different frequency. The system also includes a comparative light source configured to generate an outgoing light signal that includes multiple comparative channels. Each of the comparative channels has a different frequency. The comparative channels are each associated with one of the reference channels in that LIDAR data is generated for a sample region on a field of view using a comparative channel and the associated reference channel. The comparative channel and the associated reference channel have different frequencies.
    Type: Grant
    Filed: October 22, 2019
    Date of Patent: March 1, 2022
    Assignee: SiLC Technologies, Inc.
    Inventors: Majid Boloorian, Dazeng Feng, Bradley Jonathan Luff, Mehdi Asghari
  • Publication number: 20220018963
    Abstract: Systems and methods described herein are directed to high speed remote imaging systems, such as Light Detection and Ranging (LIDAR) systems. Example embodiments describe systems that are configured to mitigate a walk-off effect that may limit a speed of operation of the imaging system. The walk-off effect may be characterized by a failure to steer returning signals to a designated input facet of the imaging system due to continuous rotation of mirrors associated with the steering mechanisms. The walk-off effect may be mitigating by configuring more than one input waveguide to receiving returning signals associated with an output signal. The input waveguides may be spaced apart and configured to sequentially receive the input signals. In some embodiments, walk-off mitigation may extend a range of operation of the imaging systems.
    Type: Application
    Filed: July 17, 2020
    Publication date: January 20, 2022
    Applicant: SiLC Technologies, Inc.
    Inventors: Prakash Koonath, Shuren Hu, Mehdi Asghari, Bradley Jonathan Luff, Behnam Behroozpour
  • Publication number: 20210341611
    Abstract: Systems and methods described herein are directed to extending a range of operation of a remote imaging system including a Light Detection and Ranging (LIDAR) system. Example embodiments describe delaying a locally generated reference signal in time with respect to an outgoing LIDAR signal. By delaying the reference signal, the system can effectively increase a maximum range of target detection while maintaining the accuracy of target detection. In some embodiments, by delaying the reference signal, the system may be able to reduce the effects of phase noise and chirp non-linearities on the beat signal and effectively improve the signal-to-noise ratio. As such, the maximum range of operation of the system may be increased while maintaining highly accurate estimations of target depth and/or velocity.
    Type: Application
    Filed: May 4, 2020
    Publication date: November 4, 2021
    Applicant: SiLC Technologies, Inc.
    Inventor: Majid Boloorian
  • Publication number: 20210311194
    Abstract: Systems and methods described herein are directed to computationally fast and accurate processing of data acquired by a remote imaging system, such as a Light Detection and Ranging system (LIDAR). Example embodiments describe processing of scanned target data based on performing a low-resolution Fourier Transform (FT) of a beat signal that may be a function of distance and/or velocity of objects associated with the scanned target. Various methods described herein can effectively convert the low-resolution FT data into high-resolution frequency domain data that can be used to accurately estimate a frequency of the beat signal. The system may use the beat signal frequency to determine the distance and/or velocity of the corresponding object and generate point-cloud information associated with a three-dimensional image construction of the scanned target.
    Type: Application
    Filed: April 2, 2020
    Publication date: October 7, 2021
    Applicant: SiLC Technologies, Inc.
    Inventor: Majid Boloorian
  • Patent number: 10788582
    Abstract: The LIDAR chip includes a utility waveguide that guides an outgoing LIDAR signal to a facet through which the outgoing LIDAR signal exits from the chip. The chip also includes a control branch that removes a portion of the outgoing LIDAR signal from the utility waveguide. The control branch includes a control light sensor that receives a light signal that includes light from the removed portion of the outgoing LIDAR signal. The chip also includes a data branch that removes a second portion of the outgoing LIDAR signal from the utility waveguide. The data branch includes a light-combining component that combines a reference light signal that includes light from the second portion of the outgoing LIDAR signal with a comparative light signal that includes light that was reflected off an object located off of the chip.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: September 29, 2020
    Assignee: SiLC Technologies, Inc.
    Inventors: Dazeng Feng, Bradley Jonathan Luff, Mehdi Asghari
  • Publication number: 20190346568
    Abstract: The LIDAR chip includes a utility waveguide that guides an outgoing LIDAR signal to a facet through which the outgoing LIDAR signal exits from the chip. The chip also includes a control branch that removes a portion of the outgoing LIDAR signal from the utility waveguide. The control branch includes a control light sensor that receives a light signal that includes light from the removed portion of the outgoing LIDAR signal. The chip also includes a data branch that removes a second portion of the outgoing LIDAR signal from the utility waveguide. The data branch includes a light-combining component that combines a reference light signal that includes light from the second portion of the outgoing LIDAR signal with a comparative light signal that includes light that was reflected off an object located off of the chip.
    Type: Application
    Filed: May 11, 2018
    Publication date: November 14, 2019
    Applicant: SiLC Technologies, Inc.
    Inventors: Dazeng Feng, Bradley Jonathan Luff, Mehdi Asghari
  • Patent number: 5132974
    Abstract: The invention is a method for designing testability into an integrated circuit. This method is termed register transfer scan (RTS). The RTS method comprises two primary rules. The first rule is that every global feedback path in the functional circuit must contain at least one scannable storage element, i.e. it must be accessible such that data can be placed into it or read from it without passing the data through the functional circuitry of the chip. The second rule of the RTS method is that the controls for those storage elements that are not scannable are held inactive when data is being scanned into or out of the scannable storage elements.
    Type: Grant
    Filed: October 24, 1989
    Date of Patent: July 21, 1992
    Assignee: SILC Technologies, Inc.
    Inventor: Barry C. Rosales
  • Patent number: 4768196
    Abstract: Built-in self-test programmable logic arrays use a deterministic test pattern generator to generate test patterns such that each cross point in an AND-plane can be evaulated sequentially. A multiple input signature register which uses X.sup.Q +1 as its characteristic polynomial is used to evaulate the test results, where Q is the number of outputs. The final signature can be further compressed into only one bit. Instead of only determining the probability of fault detection, in this scheme, the fault detection capability has been analyzed using both the stuck at fault and the contact fault model. It can be shown that all of these faults can be detected. Shorts between two adjacent lines can be detected by using NOR gates.
    Type: Grant
    Filed: October 28, 1986
    Date of Patent: August 30, 1988
    Assignee: Silc Technologies, Inc.
    Inventors: Jing-Yang Jou, Christopher Rosebrugh