Patents Assigned to Silecs Oy
  • Patent number: 9884879
    Abstract: A method for preparation and polymerization of siloxane monomers of Formula I is presented. The synthesis includes the selective reaction between silanol containing unit and alkoxy containing units in the presence of basic catalyst. The siloxane monomers of the invention can be used for preparation of siloxane polymers with good flexibility and cracking threshold, and functional sites, useful for applications requiring low metal content in semiconductor industry.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: February 6, 2018
    Assignee: Silecs Oy
    Inventor: Jyri Paulasaari
  • Publication number: 20170088565
    Abstract: A method for preparation and polymerization of siloxane monomers of Formula I is presented. The synthesis includes the selective reaction between silanol containing unit and alkoxy containing units in the presence of basic catalyst. The siloxane monomers of the invention can be used for preparation of siloxane polymers with good flexibility and cracking threshold, and functional sites, useful for applications requiring low metal content in semiconductor industry.
    Type: Application
    Filed: September 30, 2016
    Publication date: March 30, 2017
    Applicant: SILECS OY
    Inventor: Jyri Paulasaari
  • Patent number: 9458183
    Abstract: A method for preparation and polymerization of siloxane monomers of Formula I is presented. The synthesis includes the selective reaction between silanol containing unit and alkoxy containing units in the presence of basic catalyst. The siloxane monomers of the invention can be used for preparation of siloxane polymers with good flexibility and cracking threshold, and functional sites, useful for applications requiring low metal content in semiconductor industry.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: October 4, 2016
    Assignee: Silecs Oy
    Inventor: Jyri Paulasaari
  • Patent number: 9190616
    Abstract: Synthesis of thianthrene moiety containing silane and germane monomers and their polymerization is presented. The polymers show high refractive index, high transparency and excellent thermal stability. They are useful as dielectric films for semiconductor industry and for optical applications, including high-RI materials in CMOS image sensors.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: November 17, 2015
    Assignee: Silecs Oy
    Inventors: Jyri Paulasaari, Juha T. Rantala
  • Patent number: 8952121
    Abstract: A novel novolac prepared by acid catalyzed condensation between biphenols or bisphenofluorenes and fluorenone is presented. The polymers exhibit excellent oxidative thermal stability and high carbon content, suitable for dielectric, etch stop applications as spin-on material.
    Type: Grant
    Filed: June 6, 2012
    Date of Patent: February 10, 2015
    Assignee: Silecs OY
    Inventor: Jyri Paulasaari
  • Publication number: 20140288260
    Abstract: Synthesis of thianthrene moiety containing silane and germane monomers and their polymerization is presented. The polymers show high refractive index, high transparency and excellent thermal stability. They are useful as dielectric films for semiconductor industry and for optical applications, including high-RI materials in CMOS image sensors.
    Type: Application
    Filed: June 14, 2012
    Publication date: September 25, 2014
    Applicant: SILECS OY
    Inventors: Jyri Paulasaari, Juha T. Rantala
  • Publication number: 20140249326
    Abstract: A method for preparation and polymerization of siloxane monomers of Formula I is presented. The synthesis includes the selective reaction between silanol containing unit and alkoxy containing units in the presence of basic catalyst. The siloxane monomers of the invention can be used for preparation of siloxane polymers with good flexibility and cracking threshold, and functional sites, useful for applications requiring low metal content in semiconductor industry.
    Type: Application
    Filed: June 14, 2012
    Publication date: September 4, 2014
    Applicant: SILECS OY
    Inventor: Jyri Paulasaari
  • Publication number: 20140217539
    Abstract: A semiconductor device comprising a semiconductor substrate with a plurality of photo-diodes arranged in the semiconductor substrate with interconnect layers defining apertures at the photo-diodes and a first polymer which fills the gaps such as to cover the photo-diode. Further, layers of color filters are arranged on top the gap filling polymer layer opposite to the photo-diodes and a second polymer arranged on the interconnect layers covers and planarizes and passivates the color filter layers. On top of the planarizing polymer there is a plurality of micro-lenses opposite to the color filters, and a third polymer layer is deposited on the micro-lenses for passivating the micro-lenses. According to the invention the polymer materials are comprised of a siloxane polymer which gives thermally and mechanically stable, high index of refraction, dense dielectric films exhibiting high-cracking threshold, low pore volume and pore size.
    Type: Application
    Filed: April 10, 2014
    Publication date: August 7, 2014
    Applicant: Silecs Oy
    Inventor: Juha T. Rantala
  • Publication number: 20130193543
    Abstract: A semiconductor device comprising a semiconductor substrate with a plurality of photo-diodes arranged in the semiconductor substrate with interconnect layers defining apertures at the photo-diodes and a first polymer which fills the gaps such as to cover the photo-diode. Further, layers of color filters are arranged on top the gap filling polymer layer opposite to the photo-diodes and a second polymer arranged on the interconnect layers covers and planarizes and passivates the color filter layers. On top of the planarizing polymer there is a plurality of micro-lenses opposite to the color filters, and a third polymer layer is deposited on the micro-lenses for passivating the micro-lenses. According to the invention the polymer materials are comprised of a siloxane polymer which gives thermally and mechanically stable, high index of refraction, dense dielectric films exhibiting high-cracking threshold, low pore volume and pore size.
    Type: Application
    Filed: March 7, 2013
    Publication date: August 1, 2013
    Applicant: SILECS OY
    Inventor: SILECS OY
  • Publication number: 20130143408
    Abstract: Method of forming a protective hard mask layer on a substrate in a semiconductor etch process, comprising the step of applying by solution deposition on the substrate a solution or colloidal dispersion of an alumina polymer, said solution or dispersion being obtained by hydrolysis and condensation of monomers of at least one aluminium oxide precursor in a solvent or a solvent mixture in the presence of water and a catalyst. The invention can be used for making a hard mask in a TSV process to form a high aspect ratio via a structure on a semiconductor substrate.
    Type: Application
    Filed: March 29, 2010
    Publication date: June 6, 2013
    Applicant: SILECS OY
    Inventors: Juha T Rantala, Thomas Gädda, Wei-Min Li, David A. Thomas, William McLaughlin
  • Publication number: 20120322010
    Abstract: A novel novolac prepared by acid catalyzed condensation between biphenols or bisphenofluorenes and fluorenone is presented. The polymers exhibit excellent oxidative thermal stability and high carbon content, suitable for dielectric, etch stop applications as spin-on material.
    Type: Application
    Filed: June 6, 2012
    Publication date: December 20, 2012
    Applicant: SILECS OY
    Inventor: Jyri Paulasaari
  • Patent number: 7955660
    Abstract: A method for producing a polymer for semiconductor optoelectronics, comprising the steps of providing a monomer is produced having the formula: wherein: R1 is a hydrolysable group R2 is hydrogen, and R3 is a bridging linear or branched bivalent hydrocarbyl group, said monomer being produced by hydrosilylation of the corresponding starting materials, and homo- or copolymerizing the monomer to produce a polymer.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: June 7, 2011
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jyri Paulasaari, Jarkko Pietikäinen
  • Patent number: 7833820
    Abstract: A method of producing a polymer composition for semiconductor optoelectronics, comprising the steps of providing at least one type of disilane monomer which is homo- or copolymerized to form a (co)polymer and then combined with nanoparticles to provide a polymer composition. The nanoparticle containing composition has excellent properties with high refractive index or dielectric constant.
    Type: Grant
    Filed: December 13, 2007
    Date of Patent: November 16, 2010
    Assignee: Silecs Oy
    Inventor: Juha Rantala
  • Patent number: 7646081
    Abstract: Method for forming a low dielectric constant structure on a semiconductor substrate by CVD processing. The method comprises using a precursor containing chemical compound having the formula of (R1-R2)n-Si—(X1)4-n, wherein X1 is hydrogen, halogen, acyloxy, alkoxy or OH group, R2 is an optional group and comprises an aromatic group having 6 carbon atoms and R1 is a substituent at position 4 of R2 selected from an alkyl group having from 1 to 4 carbon atoms, an alkenyl group having from 2 to 5 carbon atoms, an alkynyl group having from 2 to 5 carbon atoms, Cl or F; n is an integer 1-3. The present precursors allow for a lowering of the electronic dielectric constant compared to conventional dielectric materials, such as silicon dioxide or phenyl modified organo-containing silicon dioxide.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: January 12, 2010
    Assignee: Silecs Oy
    Inventor: Juha T. Rantala
  • Patent number: 7643717
    Abstract: Waveguides are disclosed (and other devices and materials including but not limited to hybrid organic-inorganic coatings, passivation materials, glob top materials, underfill materials, materials for IC and other applications, microlenses and any of a wide variety of optical devices) that benefit by being formed of a novel hybrid organic-inorganic material. In one embodiment of the invention, a method for making a waveguide includes: forming a lower cladding layer on a substrate; forming a core layer after the lower cladding layer; and forming an upper cladding layer after the core layer; wherein the lower cladding layer, core layer and/or upper cladding layer comprises a hybrid organic-inorganic material—that has many desirable properties relating to stability, hydrophobicity, roughness, optical absorbance, polarization dependent loss, among others.
    Type: Grant
    Filed: May 17, 2002
    Date of Patent: January 5, 2010
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Arto L. T. Maaninen, T. Teemu T. Tormanen, Tiina J. Maaninen, Jarkko J. Pietikainen
  • Patent number: 7622399
    Abstract: A method of forming a low dielectric constant structure. The method comprises providing at a first temperature a dielectric material having a first dielectric constant and a first elastic modulus, and curing the dielectric material by a thermal curing process, in which the material is heated to a second temperature by increasing the temperature at an average rate of at least 1° C. per second. As a result a densified, dielectric material is obtained which has a low dielectric constant.
    Type: Grant
    Filed: March 10, 2004
    Date of Patent: November 24, 2009
    Assignee: Silecs Oy
    Inventors: Jason Reid, Nigel Hackera, Nina Pirilä, Juha Rantala, William McLaughlin
  • Patent number: 7514709
    Abstract: A low dielectric constant polymer, comprising monomeric units derived from a compound having the general formula I (R1—R2)n—Si—(X1)4-n, wherein each X1 is independently selected from hydrogen and inorganic leaving groups, R2 is an optional group and comprises an alkylene having 1 to 6 carbon atoms or an arylene, R1 is a polycycloalkyl group and n is an integer 1 to 3. The polymer has excellent electrical and mechanical properties.
    Type: Grant
    Filed: April 13, 2004
    Date of Patent: April 7, 2009
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jyri Paulasaari, Janne Kylmä
  • Patent number: 7504470
    Abstract: A thin film comprising a composition obtained by polymerizing a monomer having the formula I: wherein: R1 is a hydrolysable group, R2 is a polarizability reducing organic group, and R3 is a bridging hydrocarbon group, to form a siloxane material. The invention also concerns methods for producing the thin films. The thin film can be used a low k dielectric in integrated circuit devices. The novel dielectric materials have excellent properties of planarization resulting in good local and global planarity on top a semiconductor substrate topography, which reduces or eliminates the need for chemical mechanical planarization after dielectric and oxide liner deposition.
    Type: Grant
    Filed: August 31, 2005
    Date of Patent: March 17, 2009
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jyri Paulasaari, Janne Kylmä, Turo T. Törmänen, Jarkko Pietikäinen, Nigel Hacker, Admir Hadzic
  • Patent number: 7479462
    Abstract: Thin films are disclosed that are suitable as dielectrics in IC's and for other similar applications. In particular, the invention concerns thin films comprising compositions obtainable by hydrolysis of two or more silicon compounds, which yield an at least partially cross-linked siloxane structure. The invention also concerns a method for producing such films by preparing siloxane compositions by hydrolysis of suitable reactants, by applying the hydrolyzed compositions on a substrate in the form of a thin layer and by curing the layer to form a film. In one example, a thin film comprising a composition is obtained by hydrolyzing a monomeric silicon compound having at least one hydrocarbyl radical, containing an unsaturated carbon-to-carbon bond, and at least one hydrolyzable group attached to the silicon atom of the compound with another monomeric silicon compound having at least one aryl group and at least one hydrolyzable group attached to the silicon atom of the compound to form a siloxane material.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: January 20, 2009
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jason S. Reid, Nungavram S. Viswanathan, T.Teemu T. Tormanen
  • Patent number: 7473650
    Abstract: A method for making an integrated circuit is disclosed as comprising depositing alternating regions of electrically conductive and dielectric materials on a substrate, wherein an area of dielectric material is formed by: a silane precursor having a fully or partially fluorinated first organic group comprising an unsaturated carbon-carbon double bond, the fully or partially fluorinated organic group bound to silicon in the silane precursor; forming from the silane precursor a hybrid organic-inorganic material having a molecular weight of at least 500 on a substrate; and increasing the molecular weight of the hybrid material by exposure to heat, electromagnetic radiation or electron beam so as to break the unsaturated carbon-carbon double bond and cross link via the fully or partially fluorinated organic group.
    Type: Grant
    Filed: December 1, 2006
    Date of Patent: January 6, 2009
    Assignee: Silecs Oy
    Inventors: Juha T. Rantala, Jason S. Reid, T. Teemu T. Tormanen, Nungavram S. Viswanathan, Arto L. T. Maaninen