Patents Assigned to Sloan Kettering Institute
  • Patent number: 11913021
    Abstract: The present invention relates to adenovirus E4ORF1 gene and to endothelial cells engineered to express the E4ORF1 gene. The present invention also relates to uses of the E4ORF1 gene, and cells expressing the E4ORF1 gene, and to compositions comprising the E4ORF1 gene, or comprising cells expressing the E4ORF1 gene.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: February 27, 2024
    Assignees: Cornell Research Foundation, Inc., Sloan-Kettering Institute for Cancer Research
    Inventors: Shahin Rafii, Fan Zhang, Marco Seandel
  • Publication number: 20240050486
    Abstract: The present disclosure provides methods for generating cortical excitatory neurons, cortical excitatory neurons generated by such methods, and composition comprising such cells. The present disclosure also provides uses of the cortical excitatory neurons and composition comprising thereof for preventing and/or treating neurodegenerative disorders.
    Type: Application
    Filed: July 7, 2023
    Publication date: February 15, 2024
    Applicants: Memorial Sloan-Kettering Cancer Center, Sloan-Kettering Institute for Cancer Research, Memorial Hospital for Cancer and Allied Diseases
    Inventors: Lorenz Studer, Gabriele CICERI
  • Publication number: 20240050385
    Abstract: The present disclosure relates to the use of iron chelation to prevent and/or treat leptomeningeal metastasis. In certain embodiments, the present disclosure provides methods for the prevention and/or treatment of leptomeningeal metastasis that include the administration of an iron chelator to a subject. The present disclosure further provides kits for performing such methods.
    Type: Application
    Filed: January 17, 2023
    Publication date: February 15, 2024
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, MEMORIAL HOSPITAL FOR CANCER AND ALLIED DISEASES
    Inventors: Adrienne Boire, Yudan Chi
  • Publication number: 20230381315
    Abstract: The presently disclosed subject matter provides cells, compositions and methods for enhancing immune responses toward tumor antigens. It relates to cells comprising: an antigen-recognizing receptor (e.g., a chimeric antigen receptor, a TCR, or a TCR like fusion molecule); and a gene disruption of a CD70 locus. The gene disruption of the CD70 locus can improve the activity and/or efficiency of the cells.
    Type: Application
    Filed: April 25, 2023
    Publication date: November 30, 2023
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, MEMORIAL HOSPITAL FOR CANCER AND ALLIED DISEASES
    Inventors: Michel Sadelain, Jorge Mansilla-Soto, Sacha P. Haubner
  • Publication number: 20230372551
    Abstract: The present disclosure provides compounds, complexes, compositions, and methods for the detection of cancer. Specifically, the compounds, complexes, compositions of the present technology include pH (low) insertion peptides. Also disclosed herein are methods of using the complexes and compositions of the present technology in diagnostic imaging to detect cancer in a subject.
    Type: Application
    Filed: September 21, 2021
    Publication date: November 23, 2023
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, MEMORIAL HOSPITAL FOR CANCER AND ALLIED DISEASES, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, UNIVERSITY OF RHODE ISLAND BOARD OF TRUSTEES, PHLIP, INC.
    Inventors: Jason S. LEWIS, Yana K. RESHETNYAK, Lukas M. CARTER, David BAUER
  • Publication number: 20230364276
    Abstract: Provided herein is a one-step method for chelating actinium-225 to a construct comprising a chelator linked to a biomolecule, such as, an antibody or monoclonal antibody, via a bifunctional ligand in, for example, a 3-arm configuration. Also provided are methods for increasing the radiochemical yield of an actinium-225-chelant-biomolecule complex and for producing a high specific activity actinium-225 complex. The chelation is performed at a physiological temperature, about 37° C. Also provided are high specific activity actinium-225 complexes, that is, actinium-225 chelated to the chelator-biomolecule construct and pharmaceutical compositions thereof. Further provided are methods of treating a neoplastic disease or disorder with the actinium-225 complexes.
    Type: Application
    Filed: April 24, 2023
    Publication date: November 16, 2023
    Applicant: Sloan-Kettering Institute for Cancer Research
    Inventors: David A. Scheinberg, Peter M. Smith-Jones, Michael R. McDevitt, William F. Maguire
  • Publication number: 20230346938
    Abstract: The presently disclosed subject matter provides chimeric antigen receptors (CARs) that specifically target CD19 and cells comprising such CD19-targeted CARs. The presently disclosed subject matter further provides uses of the CD19-targeted CARs for treatment, e.g., for treating blood cancer.
    Type: Application
    Filed: October 24, 2022
    Publication date: November 2, 2023
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, MEMORAIL HOSPITAL FOR CANCER AND ALLIED DISEASES, MILLENNIUM PHARMACEUTICALS, INC.
    Inventors: Judith FEUCHT, Jorge MANSILLA-SOTO, Isabelle RIVIERE, Michel SADELAIN, Loic VINCENT, Gary SHAPIRO, Mei Rosa NG, Dan TAVARES, Xingyue HE
  • Patent number: 11760758
    Abstract: The present invention provides a compound having the structure: or a pharmaceutically acceptable salt or ester thereof, and a method of treating a subject afflicted with pain, a depressive disorder, a mood disorder or an anxiety disorder by administering the compound to the subject.
    Type: Grant
    Filed: February 16, 2021
    Date of Patent: September 19, 2023
    Assignees: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE RESEARCH FOUNDATION FOR MENTAL HYGIENE, INC., SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH
    Inventors: Andrew C. Kruegel, Dalibor Sames, Srijita Bhowmik, Vaclav Havel, Juraj Galeta, Jonathan A. Javitch, Susruta Majumdar
  • Patent number: 11666550
    Abstract: The invention provides compounds, methods, pharmaceutical compositions, and kits for the treatment of proliferative disorders such as cancer. In one aspect, the methods comprise compounds that inhibit the activity of protein kinases, such as cell division cycle (Cdc) kinase. In another aspect, the methods comprise compounds that inhibit Cdc7 and/or Dbf4 activity. In another aspect, the methods comprise compounds that exhibit anti-proliferative properties useful in treating diseases such as cancer. Compounds useful for any of the methods include compounds of the Formula (A) or (B): or pharmaceutically acceptable salts thereof. Exemplary compounds of Formula (A) or (B) include granaticin A, granaticin B, dihydrogranaticin A, dihydrogranaticin B, medermycin, and actinorhodin.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: June 6, 2023
    Assignee: SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH
    Inventors: Mark G. Frattini, Hakim Djaballah, Thomas J. Kelly
  • Patent number: 11607465
    Abstract: This invention concerns various methods of using labeled HSP90 inhibitors to improve treatment of cancer patients with HSP90 inhibitors, including ex vivo and in vivo methods for determining whether a tumor will likely respond to therapy with an HSP90 inhibitor.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: March 21, 2023
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventors: Gabriela Chiosis, Naga Vara Kishore Pillarsetty, Jason S. Lewis, Steven M. Larson, Tony Taldone, Mary L. Alpaugh, Erica M. Gomes-DaGama
  • Publication number: 20230058774
    Abstract: The present disclosure provides novel dominant negative Fas polypeptides comprising a first modification in the cytoplasmic domain and a second modification in the N-terminal region of human Fas. The present disclosure also provides cells comprising such novel dominant negative Fas polypeptides and an antigen-recognizing receptor (e.g., a chimeric antigen receptor (CAR) or a T cell receptor (TCR)). Also provided are uses of the cells for treatment, e.g., for treating tumors and pathogen infections.
    Type: Application
    Filed: July 6, 2022
    Publication date: February 23, 2023
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, MEMORIAL HOSPITAL FOR CANCER AND ALLIED DISEASES
    Inventors: Christopher A. Klebanoff, Fei Yi
  • Publication number: 20230051518
    Abstract: The present disclosure provides methods and compositions for enhancing the immune response toward cancers and pathogens. The presently disclosed subject matter provides methods and compositions for enhancing the immune response toward cancers and pathogens. It relates to cells comprising a c-Kit mutant, e.g., a c-Kit mutant comprising an activating mutation. The cells can further comprise an antigen-recognizing receptor (e.g., a chimeric antigen receptors (CAR) or a T cell receptors (TCR)). The presently disclosed subject matter relates to the use of cells for treatment, e.g., treating cancers.
    Type: Application
    Filed: June 3, 2022
    Publication date: February 16, 2023
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, MEMORIAL HOSPITAL FOR CANCER AND ALLIED DISEASES
    Inventors: Prasad S. Adusumilli, Yuquan Xiong
  • Patent number: 11564988
    Abstract: The present invention provides soluble single wall nanotube (SWNT) constructs functionalized with a plurality of a targeting moiety and a plurality of one or more payload molecules attached thereto. The targeting moiety and the payload molecules may be attached to the soluble SWNT via a DNA or other oligomer platform attached to the SWNT. These soluble SWNT constructs may comprise a radionuclide or contrast agent and as such are effective as diagnostic and therapeutic agents. Methods provided herein are to diagnosing or locating a cancer, treating a cancer, eliciting an immune response against a cancer or delivering an anticancer drug in situ via an enzymatic nanofactory using the soluble SWNT constructs.
    Type: Grant
    Filed: September 9, 2019
    Date of Patent: January 31, 2023
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventors: David A. Scheinberg, Michael R. McDevitt, Christophe Antczak, Debjit Chattopadhyay, Rena May, Jon Njardarson, Mark Reid Phillips
  • Publication number: 20220363775
    Abstract: The presently disclosed subject matter provides for chimeric receptors that target ADGRE2 and chimeric receptors that target CLEC12A. The presently disclosed subject matter also provides for cells comprising the ADGRE2-targeted chimeric receptors, cells comprising the CLEC12A-targeted chimeric receptors, and cells comprising the ADGRE2-targeted chimeric receptors and the CLEC12A-targeted chimeric receptors. The presently disclosed subject matter further provides uses of such cells for treating tumors, e.g., AML.
    Type: Application
    Filed: April 25, 2022
    Publication date: November 17, 2022
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, MILLENNIUM PHARMACEUTICALS, INC., SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, MEMORIAL HOSPITAL FOR CANCER AND ALLIED DISEASES
    Inventors: Michel Sadelain, Sascha P. Haubner, Jorge Mansilla-Soto, Xingyue He, Gary Shapiro
  • Patent number: 11447515
    Abstract: The present invention relates to triterpene glycoside saponin-derived adjuvants, syntheses thereof, intermediates thereto, and uses thereof. QS-7 is a potent immuno-adjuvant that is significantly less toxic than QS-21, a related saponin that is currently the favored adjuvant in anticancer and antiviral vaccines. Tedious isolation and purification protocols have hindered the clinical development of QS-7. A novel semi-synthetic method is provided wherein a hydrolyzed prosapogenin mixture is used to synthesize QS-7, QS-21, and related analogs, greatly facilitating access to QS-7 and QS-21 analogs for preclinical and clinical evaluation.
    Type: Grant
    Filed: June 16, 2017
    Date of Patent: September 20, 2022
    Assignee: SLOAN KETTERING INSTITUTE FOR CANCER RESEARCH
    Inventors: David Gin, Michelle Adams, Kai Deng, Philip Livingston, Govindaswami Ragupathi, Eric Chea, Alberto Fernandez-Tejada, Lars Ulrik Nordstroem, William Walkowicz, Jeffrey Gardner, Derek Tan
  • Patent number: 11419955
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: August 23, 2022
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Publication number: 20220218748
    Abstract: The presently disclosed subject matter provides cells and compositions for improved immunotherapy and methods of using such cells and compositions. It relates to cells comprising a ligand-recognizing receptor (e.g., an antigen-recognizing receptor, e.g., a chimeric antigen receptor (CAR) or a T-cell Receptor (TCR)) and an IgG-degrading enzyme or a fragment thereof. The IgG-degrading enzyme rapidly cleaves IgG. The IgG-degrading enzyme serves as a biomolecular shield against the host humoral response. The cells have increased resistance to host humoral response (e.g., an antibody-driven host humoral response), which allows for prolonged persistence of the cells, leading to enhanced activity of the cells.
    Type: Application
    Filed: February 1, 2022
    Publication date: July 14, 2022
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, MEMORIAL HOSPITAL FOR CANCER AND ALLIED DISEASES
    Inventors: David A. Scheinberg, Leila Peraro
  • Publication number: 20220213211
    Abstract: The presently disclosed subject matter provides for antigen-recognizing receptors that specifically target CD371 and cells comprising such CD371-targeted antigen-recognizing receptors. The presently disclosed subject matter further provides uses of the CD371-targeted antigen-recognizing receptors for treatment.
    Type: Application
    Filed: March 11, 2022
    Publication date: July 7, 2022
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, TRI-INSTITUTIONAL THERAPEUTICS DISCOVERY INSTITUTE, INC., SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, MEMORIAL HOSPITAL FOR CANCER AND ALLIED DISEASES
    Inventors: Anthony Daniyan, Renier J. Brentjens, Ivo C. Lorenz, Mary Ann Pohl
  • Publication number: 20220195064
    Abstract: The presently disclosed subject matter provides antibodies or antigen-binding fragments thereof that bind to CD371 and methods of using such antibodies or antigen-binding fragments thereof same.
    Type: Application
    Filed: March 11, 2022
    Publication date: June 23, 2022
    Applicants: MEMORIAL SLOAN-KETTERING CANCER CENTER, TRI-INSTITUTIONAL THERAPEUTICS DISCOVERY INSTITUTE, INC., SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH, MEMORIAL HOSPITAL FOR CANCER AND ALLIED DISEASES
    Inventors: Anthony Daniyan, Renier J. Brentjens, Ivo C. Lorenz, Mary Ann Pohl
  • Publication number: 20220135564
    Abstract: The present invention provides a compound having the structure: or a pharmaceutically acceptable salt or ester thereof, and methods of using the compound to treat pain, depressive disorders, mood disorders, anxiety disorders, opioid use disorder, and opioid withdrawal symptoms.
    Type: Application
    Filed: January 30, 2020
    Publication date: May 5, 2022
    Applicants: The Trustees of Columbia University in the City of New York, The Research Foundation for Mental Hygiene, Inc., Sloan-Kettering Institute for Cancer Research
    Inventors: Andrew C. Kruegel, Dalibor Sames, Jonathan A. Javitch, Susruta Majumdar