Patents Assigned to Sloan Kettering Institute
  • Patent number: 10548998
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: February 4, 2020
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 10537561
    Abstract: The present invention provides a compound of formula I; wherein R1 is an alkyl pyrazole or an alkyl carboxamide, and R2 is a hydroxycycloalkyl; or a pharmaceutically acceptable salt thereof, and compositions containing these compounds, for use to treat a brain tumor, particularly glioblastoma. The invention provides effective treatment of a brain tumor and can be used by oral administration of a compound of Formula I as further described herein. The invention also provides a method to treat a subject having a brain tumor such as glioblastoma, wherein the method comprises administering to the subject an effective amount of a compound of Formula I. Gene signatures correlated with successful treatment using these methods are also disclosed.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: January 21, 2020
    Assignees: Novartis AG, Sloan-Kettering Institute for Cancer Research
    Inventors: Dylan Daniel, Johanna Joyce, James Sutton
  • Patent number: 10526310
    Abstract: Described herein are amorphous and crystalline forms of the androgen receptor modulator 4-[7-(6-cyano-5-trifluoromethylpyridin-3-yl)-8-oxo-6-thioxo-5,7-diazaspiro[3,4]oct-5-yl]-2-fluoro-N-methylbenzamide. Also described are pharmaceutical compositions suitable for administration to a mammal that include the androgen receptor modulator, and methods of using the androgen receptor modulator, alone and in combination with other compounds, for treating diseases or conditions that are associated with androgen receptor activity.
    Type: Grant
    Filed: April 15, 2019
    Date of Patent: January 7, 2020
    Assignees: Aragon Pharmaceuticals Inc., Sloan Kettering Institute for Cancer Research
    Inventors: Anna Dilhas, Mark R. Herbert, Ouathek Ouerfelli, Nicholas D. Smith
  • Patent number: 10406236
    Abstract: The present invention provides soluble single wall nanotube (SWNT) constructs functionalized with a plurality of a targeting moiety and a plurality of one or more payload molecules attached thereto. The targeting moiety and the payload molecules may be attached to the soluble SWNT via a DNA or other oligomer platform attached to the SWNT. These soluble SWNT constructs may comprise a radionuclide or contrast agent and as such are effective as diagnostic and therapeutic agents. Methods provided herein are to diagnosing or locating a cancer, treating a cancer, eliciting an immune response against a cancer or delivering an anticancer drug in situ via an enzymatic nanofactory using the soluble SWNT constructs.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: September 10, 2019
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventors: David A. Scheinberg, Michael R. McDevitt, Christophe Antczak, Debjit Chattopadhyay, Rena May, Jon Njardarson, Mark Reid Phillips
  • Patent number: 10336757
    Abstract: Treatment of neurodegenerative diseases is achieved using small molecule purine scaffold compounds that inhibit Hsp90 and that possess the ability to cross the blood-brain barrier or are other wise delivered to the brain.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: July 2, 2019
    Assignees: Sloan-Kettering Institute for Cancer Research, The Rockefeller University
    Inventors: Gabriela Chiosis, Paul Greengard, Fei Dou, Wenjie Luo, Huazhong He, Danuta Zatorska
  • Patent number: 10322194
    Abstract: The present disclosure, among other things, provides a composition including a nanoscale core; a plurality of capping agent entities associated on the core; an outer encapsulant layer; and a plurality of dopant entities distributed at locations selected from the group consisting of: on or within the nanoscale core, on or between capping agent entities, on or within the encapsulating layer, and combinations thereof. Provided technologies can achieve unprecedented levels of dopant entity density and/or surface localization, which, for a SE(R)RS-active agent dopant, results in dramatically improved signal intensity and/or imaging sensitivity.
    Type: Grant
    Filed: August 30, 2013
    Date of Patent: June 18, 2019
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventors: Moritz Kircher, Stefan Harmsen, Matthew Wall
  • Patent number: 10314815
    Abstract: The present invention provides a crystalline Form A of Compound 1, also referred to as Granaticin B, and pharmaceutically compositions thereof. The present invention also provides methods of treating a microbial infection, or a disease, disorder, or condition associated with abnormal cellular proliferation, using crystalline Form A of Compound 1 or pharmaceutical compositions thereof.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 11, 2019
    Assignee: SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH
    Inventor: Tero Kunnari
  • Patent number: 10308630
    Abstract: Described herein are amorphous and crystalline forms of the androgen receptor modulator 4-[7-(6-cyano-5-trifluoromethylpyridin-3-yl)-8-oxo-6-thioxo-5,7-diazaspiro[3.4]oct-5-yl]-2-fluoro-N-methylbenzamide. Also described are pharmaceutical compositions suitable for administration to a mammal that include the androgen receptor modulator, and methods of using the androgen receptor modulator, alone and in combination with other compounds, for treating diseases or conditions that are associated with androgen receptor activity.
    Type: Grant
    Filed: May 9, 2018
    Date of Patent: June 4, 2019
    Assignees: Sloan-Kettering Institute for Cancer Research, Aragon Pharmaceuticals, Inc.
    Inventors: Anna Dilhas, Mark R. Herbert, Ouathek Ouerfelli, Nicholas D. Smith
  • Patent number: 10307479
    Abstract: This invention provides a composition comprising an effective amount of glucan capable of enhancing efficacy of antibodies. This invention further provides the above compositions and a pharmaceutically acceptable carrier. This invention also provides a method for treating a subject with cancer comprising administrating the above-described composition to the subject. This invention provides a composition comprising effective amount of glucan capable of enhancing efficacy of vaccines. This invention also provides a method of treating a subject comprising administrating the above pharmaceutical composition to the subject. This invention provides a composition comprising effective amount of glucan capable of enhancing efficacy of natural antibodies. This invention provides a composition comprising effective amount of glucan capable of enhancing host immunity. This invention also provides a composition comprising effective amount of glucan capable of enhancing the action of an agent in preventing tissue rejection.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: June 4, 2019
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventor: Nai-Kong V. Cheung
  • Patent number: 10286057
    Abstract: The present invention relates, in general, to human immunodeficiency virus (HIV), and, in particular, to a vaccine for HIV-1, comprising synthetic V3 glycopeptides, and to methods of making and using same.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: May 14, 2019
    Assignees: Duke University, Sloan-Kettering Institute for Cancer Research, Dana-Farber Cancer Institute, Inc.
    Inventors: Barton F. Haynes, Hua-xin Liao, Samuel Danishefsky, Peter Park, Joseph Sodroski, Baptiste Aussedat, Yusuf Vohra
  • Publication number: 20190046538
    Abstract: We have discovered that administering anti-ceramide antibody treats and prevents an array of diseases mediated by cytolytic T lymphocyte (CTLs)-induced killing and by damage to endothelial microvasculture, including radiation-induced GI syndrome, Graft vs. Host diseases, inflammatory diseases and autoimmune diseases. We have also discovered new anti-ceramide monoclonal antibodies, that have therapeutic use preferably in humanized form to treat or prevent these diseases.
    Type: Application
    Filed: February 27, 2018
    Publication date: February 14, 2019
    Applicants: Sloan Kettering Institute for Cancer Research, Board of Regents, The University of Texas System
    Inventors: Jimmy Andrew ROTOLO, Richard N. KOLESNICK, Renata PASQUALINI, Wadih ARAP
  • Patent number: 10172863
    Abstract: The present application provides substituted purine derivatives and related compounds of the formulas shown. These compounds are useful as inhibitors of HSP90, and hence in the treatment of related diseases. (Formulae) Z1-Z3, Xa-Xc, X2, X4, Y and R are as defined in the specification.
    Type: Grant
    Filed: April 21, 2016
    Date of Patent: January 8, 2019
    Assignee: Sloan-Kettering Institute For Cancer Research
    Inventors: Gabriela Chiosis, Tony Taldone, Weilin Sun
  • Patent number: 10150775
    Abstract: Compounds of formula: in which R4 is chosen from substituted phenyl, optionally substituted naphthylene, optionally substituted anthracene and optionally substituted aromatic heterocycle, are useful as analgesics.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: December 11, 2018
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventors: Gavril Pasternak, Susruta Majumdar
  • Patent number: 10123992
    Abstract: The invention provides compounds, methods, pharmaceutical compositions, and kits for the treatment of proliferative disorders such as cancer. In one aspect, the methods comprise compounds that inhibit the activity of protein kinases, such as cell division cycle (Cdc) kinase. In another aspect, the methods comprise compounds that inhibit Cdc7 and/or Dbf4 activity. In another aspect, the methods comprise compounds that exhibit anti-proliferative properties useful in treating diseases such as cancer. Compounds useful for any of the methods include compounds of the Formula (A) or (B): or pharmaceutically acceptable salts thereof. Exemplary compounds of Formula (A) or (B) include granaticin A, granaticin B, dihydrogranaticin A, dihydrogranaticin B, medermycin, and actinorhodin.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: November 13, 2018
    Assignee: SLOAN-KETTERING INSTITUTE FOR CANCER RESEARCH
    Inventors: Mark G. Frattini, Hakim Djaballah, Thomas J. Kelly
  • Publication number: 20180305426
    Abstract: The present invention provides pluripotent and multipotent stem cells, including embryonic stem cells, induced pluripotent stem cells, adult stem cells and other progenitor cells, that have been modified to contain an inducible cancer-specific suicide gene construct that, upon induction, selectively kills stem- or progenitor-cell-derived cancerous cells without significant effect on healthy tissues or other (noncancerous) cells derived from such cells. This suicide gene construct expresses a dominant negative MYC-interfering protein (D-MIP) that acts as a tumor suppressor in cancer cells without significant deleterious effects on healthy cells and tissues. The suicide gene construct can also be used in gene therapies that produce cancers arising in association with the presence of the gene therapy vector and likewise discriminates between killing of cancerous cells and non-cancerous cells modified with a gene therapy vector.
    Type: Application
    Filed: January 2, 2018
    Publication date: October 25, 2018
    Applicant: SLOAN KETTERING INSTITUTE FOR CANCER RESEARCH
    Inventors: Elisa Oricchio, Hans-Guido Wendel
  • Patent number: 10105456
    Abstract: The present disclosure, among other things, provides a composition of a particle including a substrate; at least a first condensation layer comprising at least a first dopant entity; and at least a second layer comprising a second dopant entity. In some embodiments, different dopant entities are included in different layers. In some embodiments, such dopant entities are or comprise detectable entities. This, in some embodiments, provided technologies achieve multi-modality particles. Among the many advantages of provided technologies include the ability to image particles by a plurality of distinct imaging modalities and/or in a plurality of contexts (e.g., pre-surgical, intraoperative and/or post-surgical environments).
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: October 23, 2018
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventors: Stefan Harmsen, Matthew Wall, Moritz Kircher
  • Publication number: 20180258386
    Abstract: The present invention relates to adenovirus E4ORF1 gene and to endothelial cells engineered to express the E4ORF1 gene. The present invention also relates to uses of the E4ORF1 gene, and cells expressing the E4ORF1 gene, and to compositions comprising the E4ORF1 gene, or comprising cells expressing the E4ORF1 gene.
    Type: Application
    Filed: February 27, 2018
    Publication date: September 13, 2018
    Applicants: Cornell Research Foundation, Inc., Sloan-Kettering Institute for Cancer Research
    Inventors: Shahin RAFII, Fan ZHANG, Marco SEANDEL
  • Patent number: 10064867
    Abstract: The disclosure relates to Compounds of Formula (1): and pharmaceutically acceptable salts thereof wherein Z1, Z2, Z3, Xa, Xb, Xc, Y, X2, and X4 are as defined herein, compositions comprising an effective amount of a Compound of Formula (1) or a pharmaceutically acceptable salt thereof, and methods to treat or prevent a condition, such as cancer which overexpresses Her-kinases, comprising administering to an patient in need thereof a therapeutically effective amount of a Compound of Formula (1) or a pharmaceutically acceptable salt thereof.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: September 4, 2018
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventors: Tony Taldone, Gabriela Chiosis
  • Patent number: 9999694
    Abstract: The present invention provides a fluorescent silica-based nanoparticle that allows for precise detection, characterization, monitoring and treatment of a disease such as cancer. The nanoparticle has a range of diameters including between about 0.1 nm and about 100 nm, between about 0.5 nm and about 50 nm, between about 1 nm and about 25 nm, between about 1 nm and about 15 nm, or between about 1 nm and about 8 nm. The nanoparticle has a fluorescent compound positioned within the nanoparticle, and has greater brightness and fluorescent quantum yield than the free fluorescent compound. The nanoparticle also exhibits high biostability and biocompatibility. To facilitate efficient urinary excretion of the nanoparticle, it may be coated with an organic polymer, such as poly(ethylene glycol) (PEG). The small size of the nanoparticle, the silica base and the organic polymer coating minimizes the toxicity of the nanoparticle when administered in vivo.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: June 19, 2018
    Assignees: Sloan-Kettering Institute for Cancer Research, Cornell University
    Inventors: Michelle S. Bradbury, Ulrich Wiesner, Oula Penate Medina, Andrew Burns, Jason S. Lewis, Steven M. Larson
  • Patent number: 10000494
    Abstract: Purine scaffold Hsp90 inhibitors are useful in therapeutic applications and as radioimaging ligands.
    Type: Grant
    Filed: July 25, 2016
    Date of Patent: June 19, 2018
    Assignee: Sloan-Kettering Institute for Cancer Research
    Inventor: Gabriela Chiosis