Abstract: A camera-based touch system (50) includes a passive touch surface (60) and at least two cameras (63) associated with the touch surface. The at least two cameras (63) have overlapping fields of view (FOV) encompassing the touch surface. The at least two cameras (63) acquire images of the touch surface from different locations and generate image data. A processor (54) receives and processes image data generated by the at least two cameras to determine the location of the pointer relative to the touch surface when the pointer is captured in images acquired by the at least two cameras. Actual pointer contact with the touch surface and pointer hover above the touch surface can be determined.
Abstract: A method of inhibiting a subject's eyes from being exposed to projected light when the subject is positioned in front of a background on which an image is displayed comprises capturing an image of the background including the displayed image, processing the captured image to detect the existence of the subject and to locate generally the subject and masking image data used by the projector to project the image corresponding to a region that encompasses at least the subject's eyes, the image data masking compensating for differing camera and projector viewpoints.
Abstract: A participant response system (50) comprises processing structure (52) running an assessment during which participants are prompted to respond to one or more information requests. The processing structure executes a question authoring/editing facility to enable test question authoring that comprises a monitoring tool for monitoring questions during editing to inhibit creation of invalid questions. At least one display device communicates with the processing structure and is operable to display graphically authored test questions.
Type:
Application
Filed:
March 26, 2010
Publication date:
July 15, 2010
Applicant:
SMART Technologies ULC
Inventors:
TACO VAN IEPEREN, Michael Boyle, Zhaohui Xing
Abstract: A passive touch system includes a passive touch surface and at least two cameras associated with the touch surface. The at least two cameras acquire images of the touch surface from different locations and have overlapping fields of view. A processor receives and processes images acquired by the at least two cameras to detect the existence of a pointer therein and to determine the location of the pointer relative to the touch surface. Actual pointer contact with the touch surface and pointer hover above the touch surface can be determined.
Abstract: A distributed computer network includes at least two computers. Each of the at least two computers runs an application sharing program to enable an image generated by one computer to be displayed by at least one other computer. At least one of the at least two computers executes an image modifying routine to alter the appearance of an image generated by the one computer prior to display on the at least one other computer. In this manner, a user of the at least one other computer can tell at a glance if an image being presented is an image that has been received from the one computer or is its own desktop graphical user interface.
Abstract: A gesture recognition method includes detecting multiple pointers in close proximity to a touch surface to determine if the multiple pointers are being used to perform a known gesture. When the multiple pointers are being used to perform a known gesture, executing a command associated with the gesture. A touch system incorporating the gesture recognition method is also provided.
Abstract: A tensioned touch panel includes a support structure having a substrate with a generally planer conductive surface disposed thereon and an insulating spacer generally about the periphery of the substrate. A pretensioned conductive member overlies the support structure. The spacer separates the conductive membrane and the conductive surface thereby to define an air gap therebetween. A conductive membrane is secured to the support structure under sufficient tension to inhibit slack from developing in the conductive membrane as a result of changes in environmental conditions. A method of assembling a tensioned touch panel is also provided.
Abstract: A system and method for supporting coordination of resources for events in an organization includes a knowledge component storing a resource-utilization model, the resource-utilization model comprising at least one ontology, each ontology comprising a respective schema and data stored according to the schema; a knowledge acquisition component adapting the resource-utilization model in real-time in response to receiving data from various sources about resource utilization in the organization; a domain reasoner adapting the resource-utilization model based on contents of a modifiable set of rules applied by the organization; and a query endpoint receiving queries about resources for events and responding to the queries based on the resource-utilization model.
Type:
Application
Filed:
December 2, 2009
Publication date:
June 17, 2010
Applicant:
SMART Technologies ULC
Inventors:
RICHARD BEZEMER, SHYMMON BANERJEE, UMAR FAROOQ, CHRISTIAN SMITH
Abstract: A system for capturing images of a target area on which information is recorded includes a boom assembly adapted to extend outwardly from a generally vertical surface. At least one digital camera is mounted on the boom assembly at a location spaced from the surface. The at least one digital camera is oriented so that the field of view thereof encompasses a target area on the surface. A controller is in communication with the at least one digital camera. The controller conditions the at least one digital camera to acquire an image of the target area. The image acquired by the at least one digital camera is conveyed to the controller and is processed to determine if an obstacle blocking the target area is in the captured image. If so, the captured image is not further processed and additional images are acquired until an image of the target area is captured without the obstacle therein.
Abstract: A computerized method of creating an irregular-shaped table of cells comprises detecting one or more cells of a table to be removed, removing each detected cell from the table and creating a table object representing the resultant irregular-shaped table.
Abstract: An interactive input system comprises a pointer input region; and a multi-angle reflecting structure located along a single side of the pointer input region and operable to reflect radiation from a pointer within the pointer input region from at least two surface locations of the multi-angle reflecting structure, wherein the at least two surface locations each have different respective angles. An imaging system is operable to capture within at least a portion of the pointer input region images of the reflected radiation located within a field of view of the imaging system. Processing structure is provided for determining the location of the pointer relative to the pointer input region based on the at least one image.
Abstract: A plug-and-play device comprises a first plug-and-play interface for establishing a connection with a first computing device and a second plug-and-play interface for establishing a connection with a second computing device. Storage stores code that is automatically executed by the second computing device when the plug-and-play device is connected to the second computing device via the second plug-and-play interface. The code when executed by the second computing device initiates a screen display data exchange between the first and second computing devices through the plug-and-play device. A controller controls the first plug-and-play interface, the second plug-and-play interface and the storage.
Type:
Application
Filed:
November 3, 2009
Publication date:
May 6, 2010
Applicant:
SMART TECHNOLOGIES ULC
Inventors:
SHYMMON BANERJEE, DOUGLAS BLAIR HILL, DAVID LABINE, MARK MCELHINNEY, VAUGHN KEENAN
Abstract: An image projecting method comprises determining the position of a projection surface within a projection zone of at least one projector based on at least one image of the projection surface, the projection zone being sized to encompass multiple surface positions and modifying video image data output to the at least one projector so that the projected image corresponds generally to the projection surface.
Type:
Application
Filed:
October 28, 2008
Publication date:
April 29, 2010
Applicant:
SMART TECHNOLOGIES ULC
Inventors:
Gerald D. MORRISON, Paul Anthony AUGER, Mark Andrew FLETCHER, Gregory Gordon FORREST, Holly PEKAU
Abstract: A touch panel includes an input registration structure comprising a biasable medium layer. A generally inflexible cover is disposed on the input registration structure and defines a touch surface. A pointer biases the biasable medium layer at a position adjacent the pointer when the pointer is positioned proximate the touch surface. The input registration structure generates a position signal corresponding to the position of the pointer in relation to the touch surface.
Abstract: A camera-based touch system (50) includes a passive touch surface (60) and at least two cameras (63) associated with the touch surface. The at least two cameras (63) have overlapping fields of view (FOV) encompassing the touch surface. The at least two cameras (63) acquire images of the touch surface from different locations and generate image data. A processor (54) receives and processes image data generated by the at least two cameras to determine the location of the pointer relative to the touch surface when the pointer is captured in images acquired by the at least two cameras. Actual pointer contact with the touch surface and pointer hover above the touch surface can be determined.
Abstract: A method of calibrating an interactive input system comprises receiving images of a calibration video presented on a touch panel of the interactive input system. A calibration image is created based on the received images, and features are located in the calibration image. A transformation between the touch panel and the received images is determined based on the located features and corresponding features in the calibration video.
Type:
Application
Filed:
September 29, 2008
Publication date:
April 1, 2010
Applicant:
SMART TECHNOLOGIES ULC
Inventors:
DAVID E. HOLMGREN, George Clarke, Roberto A.L. Sirotich, Edward Tse, Yunqui Rachel Wang, Joe Wright, Grant McGibney
Abstract: A method for handling a user request in a multi-user interactive input system comprises receiving a user request to perform an action from one user area defined on a display surface of the interactive input system and prompting for input from at least one other user via at least one other user area. In the event that input concurring with the user request is received from another user area, the action is performed.
Type:
Application
Filed:
September 29, 2008
Publication date:
April 1, 2010
Applicant:
SMART Technologies ULC
Inventors:
Edward Tse, Erik Benner, Patrick Weinmayr, Peter Christian Lortz, Jenna Pipchuck, Taco van Ieperen, Kathryn Rounding, Viktor Antonyuk