Patents Assigned to Sophia School Corporation
  • Patent number: 9082975
    Abstract: Provided is a Bi-based piezoelectric material having good piezoelectric properties. The piezoelectric material includes a perovskite-type metal oxide represented by the following general formula (1): Ax(ZnjTi(1-j))l(MgkTi(1-k))mMnO3??General formula (1) where: A represents a Bi element, or one or more kinds of elements selected from the group consisting of trivalent metal elements and containing at least a Bi element; M represents at least one kind of an element selected from the group consisting of Fe, Al, Sc, Mn, Y, Ga, and Yb; and 0.9?x?1.25, 0.4?j?0.6, 0.4?k?0.6, 0.09?l?0.49, 0.19?m?0.64, 0.13?n?0.48, and l+m+n=1 are satisfied.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: July 14, 2015
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology, Sophia School Corporation
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Takayuki Watanabe, Jumpei Hayashi, Hiroshi Funakubo, Tomoaki Yamada, Shintaro Yasui, Keisuke Yazawa, Hiroshi Uchida, Jun-ichi Nagata
  • Patent number: 9022531
    Abstract: The piezoelectric element includes, on a substrate: a piezoelectric film; and a pair of electrodes provided in contact with the piezoelectric film; in which the piezoelectric film contains a perovskite-type metal oxide represented by the general formula (1) as a main component: Ax(ZnjTi(1-j))l(MgkTi(1-k))mMnO3??General Formula (1) wherein the perovskite-type metal oxide is uniaxially (111)-oriented in pseudo-cubic notation in a thickness direction, of the pair of electrodes, a lower electrode provided on the substrate side is a multilayer electrode including at least a first electrode layer in contact with the substrate and a second electrode layer in contact with the piezoelectric film, and the second electrode layer is a perovskite-type metal oxide electrode which is uniaxially (111)-oriented in pseudo-cubic notation in a thickness direction.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: May 5, 2015
    Assignees: Canon Kabushiki Kaisha, Tokyo Institute of Technology, Sophia School Corporation
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Takayuki Watanabe, Jumpei Hayashi, Hiroshi Funakubo, Shintaro Yasui, Takahiro Oikawa, Jun-ichi Nagata, Hiroshi Uchida
  • Patent number: 8896100
    Abstract: A III nitride structure includes a film 108 having a surface composed of a metal formed in a predetermined region on the surface of a substrate 102, and a fine columnar crystal 110 composed of at least a III nitride semiconductor formed on the surface of the substrate 102, wherein the spatial occupancy ratio of the fine columnar crystal 110 is higher on the surface of the substrate 102 where the film 108 is not formed than that on the film.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 25, 2014
    Assignee: Sophia School Corporation
    Inventors: Katsumi Kishino, Akihiko Kikuchi
  • Publication number: 20130222482
    Abstract: The piezoelectric element includes, on a substrate: a piezoelectric film; and a pair of electrodes provided in contact with the piezoelectric film; in which the piezoelectric film contains a perovskite-type metal oxide represented by the general formula (1) as a main component: Ax(ZnjTi(1-j))1(MgkTi(1-k))mMnO3??General Formula (1) wherein the perovskite-type metal oxide is uniaxially (111)-oriented in pseudo-cubic notation in a thickness direction, of the pair of electrodes, a lower electrode provided on the substrate side is a multilayer electrode including at least a first electrode layer in contact with the substrate and a second electrode layer in contact with the piezoelectric film, and the second electrode layer is a perovskite-type metal oxide electrode which is uniaxially (111)-oriented in pseudo-cubic notation in a thickness direction.
    Type: Application
    Filed: February 19, 2013
    Publication date: August 29, 2013
    Applicants: CANON KABUSHIKI KAISHA, SOPHIA SCHOOL CORPORATION, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: CANON KABUSHIKI KAISHA, TOKYO INSTITUTE OF TECHNOLOGY, SOPHIA SCHOOL CORPORATION
  • Publication number: 20130127298
    Abstract: Provided is a Bi-based piezoelectric material having good piezoelectric properties. The piezoelectric material includes a perovskite-type metal oxide represented by the following general formula (1): Ax(ZnjTi(1-j))l(MgkTi(1-k))mMnO3??General formula (1) where: A represents a Bi element, or one or more kinds of elements selected from the group consisting of trivalent metal elements and containing at least a Bi element; M represents at least one kind of an element selected from the group consisting of Fe, Al, Sc, Mn, Y, Ga, and Yb; and 0.9?x?1.25, 0.4?j?0.6, 0.4?k?0.6, 0.09?l?0.49, 0.19?m?0.64, 0.13?n?0.48, and l+m+n=1 are satisfied.
    Type: Application
    Filed: February 28, 2011
    Publication date: May 23, 2013
    Applicants: CANON KABUSHIKI KAISHA, SOPHIA SCHOOL CORPORATION, TOKYO INSTITUTE OF TECHNOLOGY
    Inventors: Makoto Kubota, Kaoru Miura, Hisato Yabuta, Takayuki Watanabe, Jumpei Hayashi, Hiroshi Funakubo, Tomoaki Yamada, Shintaro Yasui, Keisuke Yazawa, Hiroshi Uchida, Jun-ichi Nagata
  • Publication number: 20130022887
    Abstract: Hydrogen is generated effectively with a small amount of electrolytic energy. Hydrogen is generated by electrolyzing liquid ammonia to which an electrolyte was added, and the generated hydrogen is reacted with oxygen to generate electricity. Since the electrolytic energy of liquid ammonia is small, a large amount of hydrogen can be generated effectively. The electric energy obtained from hydrogen generated by the electrolysis is greater than that required for the electrolysis of liquid ammonia. Therefore, great electric power can be utilized by converting the electric power obtained from small power source thereto.
    Type: Application
    Filed: March 25, 2012
    Publication date: January 24, 2013
    Applicants: SOPHIA SCHOOL CORPORATION, HIROSHIMA UNIVERSITY
    Inventors: Yoshitsugu Kojima, Takayuki Ichikawa, Hiroshi Suzuki, Nobuko Hanada
  • Patent number: 8050305
    Abstract: A semiconductor device having high reliability, a long lifetime and superior light emitting characteristics by applying a novel material to a p-type cladding layer is provided. A semiconductor device includes a p-type semiconductor layer on an InP substrate, in which the p-type semiconductor layer has a laminate structure formed by alternately laminating a first semiconductor layer mainly including Bex1Mgx2Znx3Te (0<x1<1, 0?x2<1, 0<x3<1, x1+x2+x3=1) and a second semiconductor layer mainly including Bex4Mgx5Znx6Te (0<x4<1, 0<x5<1, 0?x6<1, x4+x5+x6=1).
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: November 1, 2011
    Assignees: Sony Corporation, Hitachi, Ltd., Sophia School Corporation
    Inventors: Katsumi Kishino, Ichiro Nomura, Koshi Tamamura, Kunihiko Tasai, Tsunenori Asatsuma, Hitoshi Nakamura, Sumiko Fujisaki, Takeshi Kikawa
  • Publication number: 20110169025
    Abstract: The present invention provides a semiconductor optical element array including: a semiconductor substrate having a main surface in which a plurality of concave portions is formed; a mask pattern that is formed on the main surface of the semiconductor substrate and includes a plurality of opening portions provided immediately above the plurality of concave portions; a plurality of fine columnar crystals that is made of a group-III nitride semiconductor grown from the plurality of concave portions to the upper side of the mask pattern through the plurality of opening portions; an active layer that is grown on each of the plurality of fine columnar crystals; and a semiconductor layer covering each of the active layers.
    Type: Application
    Filed: August 27, 2009
    Publication date: July 14, 2011
    Applicant: SOPHIA SCHOOL CORPORATION
    Inventors: Katsumi Kishino, Akihiko Kikuchi, Hiroto Sekiguchi
  • Patent number: 7899104
    Abstract: An n-type cladding layer structure which has good luminescence properties without the use of substances corresponding to RoHS Directive and a high Cl-doping efficiency, i.e. which facilitates the manufacture of a semiconductor optical element and device with low crystal defects and high reliability, and an active layer and a p-type cladding layer therefor are provided. The n-type layer being lattice matched to an InP substrate and containing Group II-VI compound as a main ingredient is a Group II-VI compound semiconductor, in which the Group II elements consist of Mg, Zn, and Be and the Group VI elements consist of Se and Te. The n-type layer of the present invention is characterized by a large energy gap, high energy of the bottom of a conduction band that is effective for suppressing the Type II luminescence, high carrier concentration, and low crystal defects attributed to a good quality crystallinity.
    Type: Grant
    Filed: February 27, 2008
    Date of Patent: March 1, 2011
    Assignees: Hitachi, Ltd., Sophia School Corporation, Sony Corporation
    Inventors: Katsumi Kishino, Ichiro Nomura, Tsunenori Asatsuma, Kunihiko Tasai, Koshi Tamamura, Hiroshi Nakajima, Hitoshi Nakamura, Sumiko Fujisaki, Takeshi Kikawa
  • Publication number: 20100252836
    Abstract: A group-III nitride structure includes a substrate 102 and a fine wall-shaped structure 110 disposed to stand on the substrate 102 in a vertical direction relative to a surface of the substrate 102 and extending in an in-plane direction of the substrate 102. The fine wall-shaped structure 110 contains a group-III nitride semiconductor crystal, and h is larger than d assuming that the height of the fine wall-shaped structure 110 is h and the width of the fine wall-shaped structure 110 in a direction perpendicular to the height direction and the extending direction is d.
    Type: Application
    Filed: November 26, 2008
    Publication date: October 7, 2010
    Applicant: Sophia School Corporation
    Inventors: Katsumi Kishino, Akihiko Kikuchi
  • Patent number: 7772586
    Abstract: The present invention aims at providing a structure in which a high p-type carrier concentration of 1×1017 cm?3 or more is obtained in a material in which, although it shows normally p-type conductivity, a carrier concentration smaller than 1×1017 cm?3 is only obtained. Also, the present invention aims at providing highly reliable semiconductor element and device each of which has excellent characteristics such as light emitting characteristics and a long lifetime. Each specific layer, i.e., each ZnSe0.53Te0.47 layer (2 ML) is inserted between host layers, i.e., Mg0.5Zn0.29Cd0.21Se layers (each having 10 ML (atomic layer) thickness) each of which is lattice matched to an InP substrate. In this case, each specific layer in which a sufficient carrier concentration of 1×1018 cm?3 or more is obtained when a single layer is inserted at suitable intervals.
    Type: Grant
    Filed: August 8, 2006
    Date of Patent: August 10, 2010
    Assignees: Sophia School Corporation, Sony Corporation, Hitachi, Ltd.
    Inventors: Katsumi Kishino, Ichiro Nomura, Koshi Tamamura, Hitoshi Nakamura
  • Publication number: 20100193910
    Abstract: A III nitride structure includes a film 108 having a surface composed of a metal formed in a predetermined region on the surface of a substrate 102, and a fine columnar crystal 110 composed of at least a III nitride semiconductor formed on the surface of the substrate 102, wherein the spatial occupancy ratio of the fine columnar crystal 110 is higher on the surface of the substrate 102 where the film 108 is not formed than that on the film.
    Type: Application
    Filed: August 27, 2008
    Publication date: August 5, 2010
    Applicant: SOPHIA SCHOOL CORPORATION
    Inventors: Katsumi Kishino, Akihiko Kikuchi
  • Patent number: 7668217
    Abstract: The present invention provides a Be-based group II-VI semiconductor laser using an InP substrate and having a stacked structure capable of continuous oscillation at a room temperature. A basic structure of a semiconductor laser is constituted by using a Be-containing lattice-matched II-VI semiconductor above an InP substrate. An active laser, an optical guide layer, and a cladding layer are constituted in a double hetero structure having a type I band line-up in order to enhance the injection efficiency of carriers to the active layer. Also, the active layer, the optical guide layer, and the cladding layer, which are capable of enhancing the optical confinement to the active layer, are constituted, and the cladding layer is constituted with bulk crystals.
    Type: Grant
    Filed: July 30, 2007
    Date of Patent: February 23, 2010
    Assignees: Hitachi, Ltd., Sophia School Corporation, Sony Corporation
    Inventors: Katsumi Kishino, Ichiro Nomura, Tsunenori Asatsuma, Hitoshi Nakamura, Tsukuru Ohtoshi, Takeshi Kikawa, Sumiko Fujisaki, Shigehisa Tanaka
  • Publication number: 20100040103
    Abstract: The present invention provides a semiconductor device including: a semiconductor layer including an n-type first cladding layer, an n-type second cladding layer, an active layer, a p-type first cladding layer, and a p-type second cladding layer in this order on an InP substrate. The n-type first cladding layer and the n-type second cladding layer satisfy formulas (1) to (4) below, or the p-type first cladding layer and the p-type second cladding layer satisfy formulas (5) to (8) below.
    Type: Application
    Filed: August 5, 2009
    Publication date: February 18, 2010
    Applicants: HITACHI, LTD, SOPHIA SCHOOL CORPORATION, SONY CORPORATION
    Inventors: Katsumi Kishino, Ichiro Nomura, Koshi Tamamura, Kunihiko Tasai, Tsunenori Asatsuma, Hiroshi Nakajima, Hitoshi Nakamura, Sumiko Fujisaki, Takeshi Kikawa
  • Patent number: 7656918
    Abstract: A semiconductor laser having an n-cladding layer, an optical guide layer, an active layer, an optical guide layer, and a p-cladding layer above an InP substrate, in which the active layer has a layer constituted with Be-containing group II-VI compound semiconductor mixed crystals, and at least one of layers of the n-cladding layer, the optical guide layer, and the p-cladding layer has a layer constituted with elements identical with those of the Be-containing group II-VI compound semiconductor mixed crystals of the active layer, and the layer is constituted with a superlattice structure comprising, as a well layer, mixed crystals of a Be compositions with the fluctuation of the composition being within ±30% compared with the Be composition of the group II-VI compound semiconductor mixed crystals of the active layer, whereby the device characteristics of the semiconductor laser comprising the Be-containing group II-VI compound semiconductor matched with the InP substrate.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: February 2, 2010
    Assignees: Hitachi, Ltd., Sophia School Corporation, Sony Corporation
    Inventors: Katsumi Kishino, Ichiro Nomura, Tsunenori Asatsuma, Hitoshi Nakamura
  • Publication number: 20080298415
    Abstract: A semiconductor device having high reliability, a long lifetime and superior light emitting characteristics by applying a novel material to a p-type cladding layer is provided. A semiconductor device includes a p-type semiconductor layer on an InP substrate, in which the p-type semiconductor layer has a laminate structure formed by alternately laminating a first semiconductor layer mainly including Bex1Mgx2Znx3Te (0<x1<1, 0<x2<1, 0<x3<1, x1+x2+x3=1) and a second semiconductor layer mainly including Bex4Mgx5Znx6Te (0<x4<1, 0<x5<1, 0<x6<1, x4+x5+x6=1).
    Type: Application
    Filed: June 3, 2008
    Publication date: December 4, 2008
    Applicants: SONY CORPORATION, HITACHI, LTD, SOPHIA SCHOOL CORPORATION
    Inventors: Katsumi Kishino, Ichiro Nomura, Koshi Tamamura, Kunihiko Tasai, Tsunenori Asatsuma, Hitoshi Nakamura, Sumiko Fujisaki, Takeshi Kikawa
  • Publication number: 20080247434
    Abstract: A semiconductor light-emitting device capable of increasing the carrier concentration of a p-type cladding layer and improving light-emitting efficiency is provided. A semiconductor light-emitting device is made of a Group II-VI compound semiconductor, and the semiconductor light-emitting device includes an active layer between an n-type cladding layer and a p-type cladding layer, in which the active layer has a Type II superlattice structure, and the junctions between the active layer and the n-type cladding layer and between the active layer and the p-type cladding layer each have a Type I structure, and the p-type cladding layer includes tellurium (Te) as a Group VI element.
    Type: Application
    Filed: March 31, 2008
    Publication date: October 9, 2008
    Applicants: SONY CORPORATION, HITACHI, LTD, SOPHIA SCHOOL CORPORATION
    Inventors: Katsumi Kishino, Ichiro Nomura, Kunihiko Tasai, Koshi Tamamura, Hiroshi Nakajima, Hitoshi Nakamura