Abstract: Methods and apparatus for providing a high-resolution spatial light modulator. A spatial light modulator includes a cell that includes: a substrate portion; a first support post and a second support post, each having a top surface; and a micro mirror that includes a hinge member having a first end and a second end. The first end and second end is secured to the top surface of the first support post and the second support post, respectively. The hinge member and the support posts are completely hidden underneath the micro mirror.
Abstract: An encapsulated device includes a micro device on a substrate, a cover bonded to the substrate thereby forming a chamber to encapsulate the micro device, and a desiccant material on the cover and in the chamber. An anti-stiction material is absorbed in the desiccant material.
Abstract: A micro mirror device includes a hinge supported by a substrate and a mirror plate tiltable around the hinge. The hinge is configured to produce an elastic restoring force on the mirror plate when the mirror plate is tilted away from an un-tilted position. The micro mirror device also includes a controller that can produce an electrostatic force to overcome the elastic restoring force to tilt the mirror plate from the un-tilted position to an “on” position or an “off” position. The electrostatic force can counter the elastic restoring force to hold the mirror plate at the “on” position or the “off” position.
Abstract: A spatial light modulator includes a two-dimensional array of hexagonal mirror plates disposed in a honeycomb pattern over a substrate. Each of the hexagonal mirror plates is supported by one or more structural members. There is a gap between adjacent hexagonal mirror plates. The structural members are not located in the gap.
Abstract: A display system includes a transparent tapered plate comprising a first face, a second face, and a third face. The first face is substantially smaller than the second face and the third face. The display system also includes a row of tiltable mirror plates each comprising a reflective surface. Each of the mirror plates is configured to tilt to an “on” position to reflect incident light in an “on” direction or to tilt to an “off” position to reflect incident light in an “off” direction. An optical scanning system is configured to control the direction of the light reflected by the mirror plates in the “on” direction. The row of the tiltable mirror plates, optical scanning system and the tapered plate are configured to allow the light reflected by the row of mirror plates in the “on” direction to enter the tapered plate at the first face, be reflected by the second face, and produce a line of image pixels on the third face.
Abstract: Methods and apparatus for providing a high-resolution spatial light modulator. A spatial light modulator includes a cell that includes: a substrate portion; a first support post and a second support post, each having a top surface; and a micro mirror. The micro mirror includes a bottom layer that includes a hinge member having a longitudinal axis, a width across the longitudinal axis, a first end on the longitudinal axis, and a second end on the longitudinal axis. The first end and second end is secured to the first support post and the second support post, respectively. The hinge member has a same thickness of the bottom layer, wherein the width of the hinge member is greater than a thickness of the bottom layer.
Abstract: A display system includes one or more rows of tiltable micro mirrors, each of which is configured to be selectively tilted to an “on” position to reflect incident light in an “on” direction and to be selectively tilted to an “off” position to reflect incident light in an “off” direction; an optical projection system configured to project light reflected by the micro mirrors in the “on” direction to produce one or more first lines of image pixels along a first direction in a display image and to change the direction of the light reflected by the micro mirrors in the “on” direction to produce one or more second lines of image pixels in the display image and a light source to produce the incident light. The one or more second lines of image pixels are substantially parallel to the one or more first lines of image pixels.
Abstract: A high contrast spatial light modulator for display and printing is fabricated by coupling a high active reflection area fill-ratio and non-diffractive micro mirror array with a high electrostatic efficiency and low surface adhesion control substrate.
Abstract: A high contrast spatial light modulator for display and printing is fabricated by coupling a high active reflection area fill-ratio and non-diffractive micro-mirror array with a high electrostatic efficiency and low surface adhesion control substrate.