Abstract: A method and wireless communication device for estimating wireless signal strength value of a wireless signal transmission for an unpopulated cell in an array corresponding to a geographic area. The method includes populating at least one cell along a route within the array with a corresponding received wireless signal strength value, selecting a number of populated cells within a predetermined distance of the unpopulated cell, identifying one of the number of populated cells within a predetermined distance of the unpopulated cell, determining a maximum wireless signal strength value from among the received wireless signal strength values, estimating a first wireless signal strength value for the unpopulated cell based at least on a wireless strength value for the identified one of the number of populated cells and the maximum wireless signal strength value, and storing the first estimated wireless signal strength value.
Abstract: A method and a node identification system for identifying at least one unknown mobile node in a communications network using details related to at least one known mobile node and organization of the details related to the at least one known mobile node. The method includes capturing details related to the at least one unknown mobile node and identifying an organization of the captured details related to the at least one unknown mobile node, comparing the details related to the at least one known mobile node and the organization of the details related to the at least one known mobile node with the captured details related to the at least one unknown mobile node and the organization of the captured details related to the at least one unknown mobile node, and determining a type of the at least one unknown mobile node based on the comparing.
Abstract: A method and a node identification system for identifying at least one unknown access point in a communications network using details related to at least one known access point and organization of the details related to the at least one known access point. The method includes capturing details related to the at least one unknown access point and identifying an organization of the captured details related to the at least one unknown access point, comparing the details related to the at least one known access point and the organization of the details related to the at least one known access point with the captured details related to the at least one unknown access point and the organization of the captured details related to the at least one unknown access point, and determining a type of the at least one unknown access point based on the comparing.
Abstract: A method and monitoring station are disclosed that enable efficient communications between a monitoring station and a wireless device. The method includes determining that receipt of a first data packet by the monitoring station from the wireless device has been received without error, receiving a subsequent data packet at the monitoring station from the wireless device, determining that the subsequent data packet being received from the wireless device is a retransmission of the first data packet, and transmitting a first acknowledgement to the wireless device before the subsequent data packet is received in its entirety. A propagation delay may be estimated and used to adjust certain parameters of the monitoring station so as to account for excessive delays that are beyond the delays anticipated by and accommodated within the IEEE802.11 Standard.
Abstract: A monitoring station and method for increasing a frequency of wireless packet reception. The monitoring station includes a physical layer (PHY) having a plurality of radio frequency (RF) receivers, processing circuitry comprising a processor, and a memory storing instructions that, when executed, configure the processor to control timing offsets of each of the plurality of RF receivers such that each of the plurality of RF receivers has a different timing offset with respect to each other. The monitoring station includes an RF signal router configured to receive an incoming RF signal and route the RF signal to the plurality of RF receivers, and vary at least one of signal gain and signal loss for the incoming RF signal across each of the plurality of RF receivers such that each of the plurality of RF receivers has a different effective noise figure with respect to each other.
Abstract: A passive geo-location scheme of Wi-Fi access points is described using one or more mobile measuring stations. The methods and arrangements herein relate to, in one embodiment, using the TSF timer in beacons received by the measuring station, the reported TODs, the TOAs measured by the measuring station and synchronization between the timers of the wireless device and the measuring station. The synchronization includes applying a factor ? for correcting the timer associated with the measuring station when the measuring station receives the beacons, applying a factor ? for correcting a ratio of timer rates between the timer associated with the wireless device and the timer associated with the measuring station, and applying a factor ? for correcting changes in a timer rate ratio between the first timer associated with the wireless device and the timer associated with the measuring station.
Abstract: A method and wireless communication device for tracking frequencies of transmitted burst signals. The method includes receiving a burst signal, determining a quality of the burst signal and a carrier frequency of the burst signal, demodulating the burst signal based upon the determined carrier frequency, determining a frequency offset of the burst signal based on the determined carrier frequency, and when the quality of the burst signal exceeds a threshold, calculating a drift window based on the determined frequency offset.
Type:
Grant
Filed:
February 1, 2016
Date of Patent:
March 20, 2018
Assignee:
SR Technologies, Inc.
Inventors:
John C. Sinibaldi, Adam Ruan, Conrad C. Smith
Abstract: An assisted passive geo-location method and system for determining the location of a wireless device. The method includes passive location techniques in order to assist in determining the location of the wireless device and active techniques in order to assist in the calculation of the relative drift between the clock associated with the wireless device and the clock associated with the measuring station.
Abstract: A method and a node identification system for identifying at least one unknown mobile node in a communications network using details related to at least one known mobile node and organization of the details related to the at least one known mobile node. The method includes capturing details related to the at least one unknown mobile node and identifying an organization of the captured details related to the at least one unknown mobile node, comparing the details related to the at least one known mobile node and the organization of the details related to the at least one known mobile node with the captured details related to the at least one unknown mobile node and the organization of the captured details related to the at least one unknown mobile node, and determining a type of the at least one unknown mobile node based on the comparing.
Abstract: Disclosed is a method and apparatus for detecting an excitation position of an SRM by comparison of detected currents. The method includes detecting a current by applying a first test voltage to each phase of the SRM, detecting a current by applying a second test voltage to each phase, determining an operation state of the SRM based on a deviation between the currents detected in any one of the phases, determining the operation state of the SRM as a rotation state if the deviation value exceeds a predetermined value, and applying a third test voltage to a phase excited just prior to a current excited phase to detect the current and turning on a phase to be next excited if the detected current value is more than a first reference value, and turning off the phase excited just prior to the presently excited phase if the detected current value is more than a second reference value. The phase excitation position is accurately detected according to the rotating speed without using a position sensor.
Type:
Grant
Filed:
January 17, 2006
Date of Patent:
October 9, 2007
Assignee:
SR Technologies, Inc.
Inventors:
Jin-Woo Ahn, Dong-Hee Lee, Tae-Hyoung Kim