Patents Assigned to St. Jude Medical AB
  • Patent number: 9114251
    Abstract: A medical implantable lead of the type being adapted to be implanted into a human or animal body and attached with a distal end to an organ inside the body, has a helix of a helical wire in the distal end which is adapted to be screwed into the organ. In addition to the first helix, the lead also has a second helix of a helical wire, the second helix having the same diameter, the same pitch and being intertwined with the helical wire of the first helix and which, upon rotation of the first helix, will be rotated and screwed into the tissue. The first helix is electrically non-conductive whereas the second helix is electrically conductive. In a method for attaching a medical implantable lead to an organ inside a human or animal body, such a medical lead is employed and fixed to tissue in vivo.
    Type: Grant
    Filed: April 25, 2008
    Date of Patent: August 25, 2015
    Assignee: St. Jude Medical AB
    Inventors: Rolf Hill, Olof Stegfeldt
  • Patent number: 9108064
    Abstract: An implantable medical device has an impedance processor that determines impedance data reflective of the transvalvular impedance of a heart valve of a heart during a heart cycle. The determined impedance data are processed by a representation processor that estimates diastolic and systolic transvalvular impedance representations. A condition processor determines the presence of any heart valve malfunction, such as valve regurgitation andor stenosis, of the heart valve based on the estimated diastolic and systolic transvalvular impedance representations.
    Type: Grant
    Filed: November 28, 2008
    Date of Patent: August 18, 2015
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Andreas Blomqvist, Karin Järverud
  • Patent number: 9101332
    Abstract: A lead comprises a mechanical switch at a proximal end of a rotatable shaft. The mechanical switch has a first position to electrically connect a first electric conductor to a second electric conductor for electrically activating a pin and has a second position to electrically connect the first electric conductor to the rotatable shaft for electrically activating a helix. Proper fixation of the helix to an organ is determined by inserting a stylet into the mechanical switch to render the pin electrically active and the helix electrically inactive. Upon determination of proper fixation of the helix to the organ, the stylet is removed from the mechanical switch to render the helix electrically active and the pin electrically inactive.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: August 11, 2015
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Sara Hallander, Marcus Helgesson
  • Patent number: 9101754
    Abstract: A connector for an implantable medical lead that is electrically and mechanically connectable to an implantable medical device, has a connector pin made of a first conducting material. A tubular insulator made of an insulating material concentrically surrounds at least a portion of the pin. A connector ring made of a second conducting material is concentrically positioned around at least a portion of the insulator. The insulator is connected to the connector ring by spark plasma sintering in the case of an active fixation lead, and is connected to the ring and the pin by spark plasma sintering in the case of a passive fixation lead.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: August 11, 2015
    Assignee: ST. JUDE MEDICAL AB
    Inventors: Rolf Hill, Andreas Örnberg, Eva Micski, Henrik Djurling, Mats Nygren
  • Patent number: 9026207
    Abstract: In a device and a method for providing correlated measures for predicting potential occurrence of atrial fibrillation, an impedance of the patient is measured to obtain impedance information; cardiogenic data is determined from the information; respiratory data is determined from the information; at least one hemodynamic measure is calculated from the cardiogenic data and at least one apnea measure is calculated from the respiratory data; the hemodynamic and apnea measures are correlated such that the correlated measures can be utilized for predicting potential occurrence of atrial fibrillation.
    Type: Grant
    Filed: January 28, 2008
    Date of Patent: May 5, 2015
    Assignee: St Jude Medical AB
    Inventor: Andreas Blomqvist
  • Patent number: 8998820
    Abstract: The present invention relates to an improved medical device and method for accurately and reliably determining a cardiac status of a patient. An implantable medical device, IMD, comprises a sensor arrangement adapted to sense signals related to mechanical activity of the heart and an activity level sensor arrangement adapted to sense an activity level of the patient. Further, the IMD calculates a percentage of left ventricular diastolic time (PLVDT) for a cardiac cycle corresponding to a relation between a diastolic time interval and a cardiac cycle time interval using the determined systolic and diastolic time intervals or a percentage of left ventricular systolic time (PLVST) for a cardiac cycle corresponding to a relation between a systolic interval time interval and a cardiac cycle time interval. A cardiac status is determined based on the calculated PLVDT (or PLVST) and on an activity level of the patient.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: April 7, 2015
    Assignee: St. Jude Medical AB
    Inventors: Karin Jarverud, Anders Bjorling, Jay Snell
  • Patent number: 8983590
    Abstract: In an implantable medical device, such as a bi-ventricular pacemaker and a method for detecting and monitoring mechanical dyssynchronicity of the heart, a dyssynchronicity measure indicating a degree of mechanical dyssynchronicity of a heart of a patient is calculated. A first intracardiac impedance set is measured using electrodes placed such that the first intracardiac impedance set substantially reflects a mechanical activity of the left side of the heart and a second intracardiac impedance set is measure using electrodes placed such that the second intracardiac impedance set substantially reflects a mechanical activity of the right side of the heart.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: March 17, 2015
    Assignee: St. Jude Medical AB
    Inventor: Andreas Blomqvist
  • Patent number: 8972010
    Abstract: The present invention generally relates to implantable medical devices, such as pacemakers, and, in particular, to a method and an implantable medical device capable of detecting the presence of noise caused by external noise sources. Voltages and/or impedances are measured over one or several electrode configurations. Based on the measured voltages and/or impedances, noise parameters are calculated, which are compared with reference values to detect the presence of noise. In another aspect of the invention, at least two different electrode configurations with different noise pick-up areas are used in the measurement. Relations between the noise parameters of the at least two vectors are calculated and compared with reference relations to detect the presence of noise.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: March 3, 2015
    Assignee: St. Jude Medical AB
    Inventors: Allan Olson, Lars Karlsson, Marcus Berner
  • Patent number: 8972025
    Abstract: An implantable medical lead has a distal lead portion with a tubular header and a fixation helix provided in a lumen of the tubular header. The fixation helix is connected to a shaft attached to a conductor coil. A tubular coupling is connected to the tubular header and is coaxially arranged relative the shaft, with the shaft in its lumen. Rotation of the conductor coil causes rotation of the shaft and the fixation helix and longitudinal movement of the fixation helix out of the implantable medical lead by a rotation-to-translation transforming element. A friction device is arranged between the shaft and the tubular coupling or between the tubular header to oppose rotation of the shaft relative the tubular header and the tubular coupling.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: March 3, 2015
    Assignee: St. Jude Medical AB
    Inventors: Rolf Hill, Olof Stegfeldt
  • Patent number: 8934988
    Abstract: Hypertension is treated in a patient by implanting an ablation stent in a renal artery of the patient. Energy is transmitted to the ablation stent to induce heating of the ablation stent, which causes ablation of a renal sympathetic nerve present on the outside of the portion of the renal artery comprising the ablation stent. A preferred ablation stent is in the form of an N-turn coil of an electrically conductive wire forming a meander structure. The respective ends of the wire are electrically connected to each other.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: January 13, 2015
    Assignee: St. Jude Medical AB
    Inventors: Torbjorn Persson, Cecilia Emanuelsson, Hans Abrahamson
  • Patent number: 8929982
    Abstract: An implantable medical device comprises a connector connectable to an implantable oxygen sensor configured to generate a sensor signal representative of oxygen concentration in coronary sinus blood in a subject's heart. An ischemia detector is connected to the connector and configured to detect an ischemic event in the heart if the sensor signal indicates a temporary decrease in oxygen concentration in the coronary sinus blood below a normal level followed by a temporary increase in oxygen concentration in the coronary sinus blood above the normal level.
    Type: Grant
    Filed: October 16, 2012
    Date of Patent: January 6, 2015
    Assignee: St. Jude Medical AB
    Inventors: Nils Holmstrom, Michael Broome
  • Patent number: 8918165
    Abstract: The present invention relates generally to medical devices for electrode positioning during implantation procedures. A cardiac signal measuring device measures cardiac signals sensitive to inherent differences between cardiac tissue and blood using at least one electrode of a medical lead arranged at a distal tip of the medical lead and at least a second electrode arranged at a distance from the distal electrode and being connectable to the measuring unit. An analyzing module acquires cardiac signals measured during predetermined measurement sessions. The analyzing module determines at least one cardiac signal value based on the cardiac signals for each measurement session and analyzes changes of the cardiac signal values between different measurement sessions to determine a position of the electrode relative a tissue border. A maximum of the change of the cardiac signal values between two successive measurement sessions indicates that the electrode has reached the tissue border.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: December 23, 2014
    Assignee: St. Jude Medical AB
    Inventors: Sven-Erik Hedberg, Nils Holmstrom, Johan Eckerdal, Torbjorn Persson, Rolf Hill, Fredrik Westman
  • Patent number: 8914132
    Abstract: A medical implantable lead has a header in a distal end, a fixation arrangement and an electrode arranged in the header. The lead also has a connector in a proximal end that includes a connector pin and is adapted to be connected to a monitoring and/or controlling device, and an inner coil, which extends inside an outer casing of the lead and is adapted to transmit electrical signals between the monitoring and/or controlling device and the electrode. The inner coil is attached to the connector pin. The inner coil extends through a bore inside the connector pin and is attached to the connector pin in its proximal end. A method for manufacturing such a lead is also provided.
    Type: Grant
    Filed: October 14, 2013
    Date of Patent: December 16, 2014
    Assignee: St. Jude Medical AB
    Inventors: Per Jarl, Rolf Hill
  • Patent number: 8903514
    Abstract: A medical implantable lead comprises a conduction controlling means, which at least during an initial stage after implantation is capable of rendering a first contact surface electrically inactive and which is capable of rendering the first contact surface electrically active after the initial stage. By means of the inventive lead it is possible to detect whether the helix is sufficiently screwed into the tissue or not.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: December 2, 2014
    Assignee: St. Jude Medical AB
    Inventors: Sara Hallander, Marcus Helgesson
  • Patent number: 8897884
    Abstract: An implantable medical device has an electronic circuit and a telemetry circuit both connected to a common ground, and at least one RF telemetry antenna that is formed by a number of parts of the implantable device that are capable of functioning as an antenna. When implanted, these parts are in contact with tissue. For voltage protection, the RF antenna circuit is connected to the parts of the RF telemetry antenna via at least one capacitor. The capacitor is dimensioned to withstand a voltage amplitude of a pulse that would be capable of modifying the state of, or destroying, any component in the RF telemetry circuit or the electronic circuit.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: November 25, 2014
    Assignee: St. Jude Medical AB
    Inventor: Tomas Snitting
  • Patent number: 8896462
    Abstract: The present invention is directed to an implantable medical device and a method for power management for power efficient use of RF telemetry during, for example, conditions where long periods of continuous monitoring of the device and the patient is desired such as during MRI procedures. A protocol module adapted to, at receipt of a low power protocol indication, activate and use a low power protocol for communication between the device and external units. The protocol module is capable of switching between different communication protocols including a low power communication protocol and a default RF communication protocol depending on, for example, whether continuous long-term monitoring of the patient is performed.
    Type: Grant
    Filed: November 27, 2009
    Date of Patent: November 25, 2014
    Assignee: St. Jude Medical AB
    Inventors: Niklas Skoldengen, Hans Abrahamson, Therese Danielsson
  • Patent number: 8886310
    Abstract: In a system and method for controlling an implantable stimulator capable of producing pacing pulses to be delivered to cardiac tissue, as well as vagal stimulation pulses to be delivered to vagus nerve sites, upon detection of a premature cardiac event, such as a premature ventricular or atrial contraction, a simulated heart rate turbulence (HRT) procedure is applied if the intrinsic heart rate turbulence is weakened or absent. The simulated HRT includes a first phase in which the heart rate is increased, from the existing level, for a number of heart beats, a second phase in which the heart rate is decreased for a number of heart beats, and an optional third phase in which the heart rate is returned to said existing level.
    Type: Grant
    Filed: June 9, 2006
    Date of Patent: November 11, 2014
    Assignee: St. Jude Medical AB
    Inventors: Kjell Norén, Taraneh G. Farazi
  • Patent number: 8874234
    Abstract: An implantable device comprises a polymer structure having an outer surface facing a surrounding tissue when the implantable device is implanted in a subject body. At least a portion of the surface of the structure has a semi-random pattern of extending micropillars. The semi-random pattern of micropillars on the surface contributes to advantageous surface characteristics of the implantable device in terms of reducing adhesion viable cells to the implantable device as compared to regular patterns of micropillars.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: October 28, 2014
    Assignee: St. Jude Medical AB
    Inventors: Louise Carlsson, Steven Savage, Jens Wigenius, Jessica Eriksson, Kenneth Dowling
  • Patent number: 8868200
    Abstract: An implantable medical device has a housing having a first housing surface side, a second housing surface side opposing the first housing surface side, and an intermediate surface side extending between the first and second housing surface sides. The implantable medical device has an antenna device arranged at the first housing surface side, continuing at the intermediate surface side and further at the second housing surface side. Improved radiation characteristics are obtained in a desired direction.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: October 21, 2014
    Assignee: St. Jude Medical AB
    Inventors: Hans Abrahamson, Viktor Skoog
  • Patent number: 8862221
    Abstract: In a method and system for monitoring mechanical properties of a heart in a subject, multiple cardiogenic impedance values reflective of the impedance of the heart in connection with a transition from inhalation to exhalation in the subject are determined. Correspondingly, multiple cardiogenic impedance values reflective of the impedance of the heart in connection with a transition from exhalation to inhalation are determined. The impedance values are collectively processed to form a trend parameter. The value determination and processing is performed over several respiratory cycles spaced apart in time to form a plurality of trend parameters over time. The mechanical properties of the heart are monitored by processing these different trend parameters. The data collection and optionally at least a part of the data processing is performed by an implantable medical device.
    Type: Grant
    Filed: February 21, 2007
    Date of Patent: October 14, 2014
    Assignee: St. Jude Medical AB
    Inventor: Andreas Blomqvist