Patents Assigned to St. Jude Medical AB
  • Publication number: 20140012359
    Abstract: The invention relates to a medical implantable lead for monitoring and/or controlling an organ inside a human or animal body. The lead comprises a first electrode (6I) at a distal end of the lead adapted to be in contact with tissue of the organ, a connector at a proximal end of the lead adapted to be connected to a monitoring and/or controlling device, a conducting arrangement comprising a first conducting coil (9I) of at least one electrically conducting wire (10I) for connecting the first electrode electrically to the connector to receive and/or transmit electric signals from and to the tissue, respectively, and a flexible tubing (7) surrounding the lead from the proximal to the distal end, wherein the lead is tapered in a distal portion and has a smaller cross sectional dimension at the distal portion than at the rest of the lead.
    Type: Application
    Filed: September 9, 2013
    Publication date: January 9, 2014
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Anders Bjorling, Caroline Sparf
  • Patent number: 8626313
    Abstract: In a piezoelectric sensor, a method for the manufacture thereof, and an implantable lead embodying such a piezoelectric sensor, a layer of piezoelectric material, having aligned, polarized dipoles, is applied to a tubular supporting substrate, the layer of piezoelectric material having at least one electrode at an outer surface thereof and at least one electrode at an inner surface thereof. The piezoelectric material is applied on the inner circumference of the tubular supporting substrate.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: January 7, 2014
    Assignee: St. Jude Medical, AB
    Inventors: Tom Eriksson, Kenth Nilsson, Sven-Erik Hedberg
  • Patent number: 8620432
    Abstract: An implantable medical device applies an electric signal over two electrodes and measures the resulting electric signal over a candidate pair of neighboring electrodes on a lead for a first heart ventricle or over a candidate electrode of the lead and a case electrode. An impedance signal is determined for each candidate pair or electrode based on the applied signal and the measured resulting signal. A time difference between start of contraction in a second ventricle and the timing of local myocardial contraction as identified from the impedance signal at the site of the candidate pair or electrode is determined for each candidate pair or electrode. An optimal pacing electrode is selected to correspond to one of the electrodes of the candidate pair having the largest time difference or the candidate electrode having largest time difference.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: December 31, 2013
    Assignee: St. Jude Medical AB
    Inventors: Sven-Erik Hedberg, Nils Holmström, John Gustafsson, Andreas Blomqvist, Andreas Karlsson
  • Publication number: 20130345582
    Abstract: In an implantable heart monitoring device and method, particularly for monitoring diastolic dysfunction, a control circuit (a) detects the heart rate, (b) derives information correlated to the stroke volume of the heart at the detected heart rate, and (c) stores the detected heart rate and the derived information correlated to the stroke volume in a memory. The control circuit automatically implements (a), (b) and (c) at a number of different occasions for a number of different, naturally varying heart rates, so that the memory contains information indicating the stroke volume as a function of the heart rate.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 26, 2013
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Andreas Blomqvist, Michael Broome
  • Publication number: 20130339677
    Abstract: The invention provides microprocessor extensions for cooperating with a sequential arithmetic-logic unit (ALU) to execute a multiply-and-accumulate operation (MAc). The ALU performs a continuous sequence of accumulation instructions synchronously with a clock signal (CLK1). Buffers (BUF1, BUF2) store input data which are fed to a combinatorial multiplier (MULT) by first buses (L1, L2). A second bus (N1) forwards the product to the ALU, where it is accumulated with previous data. Since at least the first buses operate independently of the clock signal, they do not limit the speed of the MAc operation. In particular embodiments, a finite state machine (FSM) controls the buses on the basis of triggers, e.g., signals from the multiplier and/or ALU indicating the completion of their respective instructions. The FSM may be operable in a low-power mode. The invention also relates to methods, computer programs and the use of a sequential ALU for executing MAc operations.
    Type: Application
    Filed: April 14, 2011
    Publication date: December 19, 2013
    Applicant: ST. JUDE MEDICAL AB
    Inventor: Mattias Tullberg
  • Publication number: 20130325359
    Abstract: A patient-specific hemodyanmic status model is determined from impedance data collected during periods of normal and abnormal hemodynamic status by deriving parameter values of a set of multiple impedance-derivable parameters from impedance signals collected during periods of normal hemodynamic status and in connection with periods of abnormal hemodynamic status. The parameter values are employed to estimate coefficients of a linear parametric status model. These coefficients can then be used together with parameter values determined from impedance signals determined during status assessment periods in order to determine a current hemdoynamic status of the patient.
    Type: Application
    Filed: March 18, 2011
    Publication date: December 5, 2013
    Applicant: St. Jude Medical AB
    Inventors: Karin Jarverud, Anders Bjorling, Malin Hollmark, Kjell Noren, Tomas Svensson, Stefan Hjelm
  • Patent number: 8577449
    Abstract: Disclosed are systems and methods for automatically determining ST windows for ischemia detection. An IEGM signal is obtained over a period of time a derivative signal of the IEGM signal is calculated. The R-wave is identified in the derivative signal and the derivative signal data following the identified R-wave is analyzed to find portions of the derivative signal comprising samples having lower values than a predetermined threshold. Further, a portion of the derivative signal including samples having lower values than the threshold is determined to correspond to a ST window for that cardiac cycle if that portion fulfills predetermined requirements. A reference ST window based on a number of determined ST windows is determined. Using the reference ST window, ischemia can be detected by comparing IEGM data in the reference ST window with current IEGM data from a segment of the IEGM signal corresponding to the reference ST window.
    Type: Grant
    Filed: June 20, 2012
    Date of Patent: November 5, 2013
    Assignee: St. Jude Medical AB
    Inventor: Anders Bjorling
  • Patent number: 8574241
    Abstract: A steerable stylet for a medical implantable lead has an inner lumen, into which the steerable stylet is insertable for navigating a distal end of the medical implantable lead to the desired location for attachment to tissue. The steerable stylet comprises a wire, a tube and an actuator. By means of the steerable stylet, the distal portion of the lead may be bent in desirable degree and, when the medical implantable lead is bent, the distal portion of the medical implantable lead is pivotal by means of the actuator to which the proximal end of the wire is non-rotatably connected. The tube is connected to the actuator by means of a torque limitation device which, when exceeding a predetermined torque force, will disconnect the torque connection between the tube and the actuator. A method for manufacturing of a steerable stylet for a medical implantable lead includes the step of connecting the stylet tube to the actuator by a torque limiting device as described above.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: November 5, 2013
    Assignee: St. Jude Medical AB
    Inventor: Johan Sjöstedt
  • Publication number: 20130289641
    Abstract: The present invention relates generally to methods and systems for optimizing stimulation of a heart of a patient. Hemodynamical index signals reflecting a mechanical functioning of a heart of a patient are recorded at different hemodynamical states. Corresponding hemodynamical reference signals at corresponding hemodynamical states are recorded. At least one hemodynamical index parameter is extracted from the recorded hemodynamical index signals. The at least one hemodynamical index parameter is a measure of the mechanical functioning of the heart and a hemodynamical index model is created, wherein the hemodynamical index model is based on the at least one hemodynamical index parameter and a comparison between output results from the hemodynamical index model and corresponding hemodynamical reference signals. From this hemodynamical index model, a hemodynamical index can be derived, which then can be used in determining patient customized cardiac pacing settings of the cardiac stimulator.
    Type: Application
    Filed: December 23, 2010
    Publication date: October 31, 2013
    Applicant: ST. JUDE MEDICAL AB
    Inventors: John Gustafsson, Andreas Karlsson, Andreas Blomqvist, Hedberg Sven-Erik, Nils Holmstrom
  • Patent number: 8565866
    Abstract: An implantable medical device has an impedance determiner for determining a cardiogenic impedance signal based on electric signals sensed by connected electrodes. A parameter calculator processes the impedance signal to calculate an impedance parameter representative of the cardiogenic impedance in connection with the diastolic phase of a heart cycle. This parameter is then employed by the device for monitoring acute decompensated heart failure status of a subject.
    Type: Grant
    Filed: December 21, 2007
    Date of Patent: October 22, 2013
    Assignee: St. Jude Medical AB
    Inventors: Andreas Blomqvist, Nils Holmström, Sven-Erik Hedberg, Malin Öhlander
  • Patent number: 8560068
    Abstract: An implantable medical system for delivering pacing pulses to HIS bundle of a heart of a patient when implanted in said patient includes a medical lead, which is adapted to be attached with a distal end to tissue of said heart, including a at least two electrodes arranged being electrically separated from each other. The implantable medical device connectable to the medical lead includes a pacing circuit adapted to deliver the pacing pulses to said heart via the medical lead, a selection device connected between the pacing circuit and the electrodes adapted to selectively activate at least one of said electrodes, and a processing device adapted to control the selection device to selectively activate at least one of the electrodes to direct the pacing pulses to the HIS bundle.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: October 15, 2013
    Assignee: St. Jude Medical AB
    Inventors: Mikael Forslund, Johan Eckerdal
  • Patent number: 8554320
    Abstract: The invention relates to a medical implantable lead for monitoring and/or controlling an organ inside a human or animal body. The lead comprises a conducting arrangement having a first conducting coil of at least one electrically conducting wire for connecting a first electrode electrically to a connector to receive and/or transmit electric signals from and to the tissue, respectively. The lead is tapered in a distal portion and has a smaller cross sectional dimension at the distal portion than at the rest of the lead. The first conducting coil is terminated at a termination point on a distance from the distal end. The conducting arrangement has a first end conductor in the form of a non-coiled electric conductor or an eccentrically positioned small diameter coil which connects the first electrode electrically with the coil.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: October 8, 2013
    Assignee: St. Jude Medical AB
    Inventors: Anders Bjorling, Caroline Sparf
  • Publication number: 20130245732
    Abstract: A lead header for an implantable medical lead is in the form of a metal sheet bent to form a metal tube having a lumen. The metal sheet has a protruding portion that extends radially inwardly into the lumen. The protruding portion may be lip arranged in connection with one of the longitudinal sides of the metal sheet that is bent to protrude radially inwardly into the lumen, or it may be a dent formed in the metal sheet. In either case, the protruding portion is configured to transform a rotation of a helical fixation element of the medial lead that is at least partly present in the lumen into a longitudinal movement of the helical fixation element relative to the lead header.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Per E. Jarl, Stefan Christiander
  • Publication number: 20130245621
    Abstract: Hypertension is treated in a patient by implanting an ablation stent in a renal artery of the patient. Energy is transmitted to the ablation stent to induce heating of the ablation stent, which causes ablation of a renal sympathetic nerve present on the outside of the portion of the renal artery comprising the ablation stent. A preferred ablation stent is in the form of an N-turn coil of an electrically conductive wire forming a meander structure. The respective ends of the wire are electrically connected to each other.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 19, 2013
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Torbjorn Persson, Cecilia Emanuelsson, Hans Abrahamson
  • Patent number: 8535215
    Abstract: In an implantable heart monitoring device and method, particularly for monitoring diastolic dysfunction, a control circuit (a) detects the heart rate, (b) derives information correlated to the stroke volume of the heart at the detected heart rate, and (c) stores the detected heart rate and the derived information correlated to the stroke volume in a memory. The control circuit automatically implements (a), (b) and (c) at a number of different occasions for a number of different, naturally varying heart rates, so that the memory contains information indicating the stroke volume as a function of the heart rate.
    Type: Grant
    Filed: August 29, 2008
    Date of Patent: September 17, 2013
    Assignee: St. Jude Medical AB
    Inventors: Andreas Blomqivst, Michael Broomé
  • Publication number: 20130238045
    Abstract: The present invention relates generally to methods for implantable medical devices and more particularly to methods for optimizing stimulation of a heart of a patient. The method comprises: determining recommended pacing settings including recommended AV delays and/or recommended W delays based on IEGM data. Further, at least one hemodynamical parameter is determined based on measured at least one hemodynamical signal. Reference pacing settings are determined including reference AV delays and/or reference W delays based on said hemodynamical parameters. An AV delay correction value and a W delay correction value are calculated as a difference between recommended AV and/or VV delays and reference AV and/or W delays, respectively. The correction values are used for updating recommended AV and/or VV delays, respectively.
    Type: Application
    Filed: November 30, 2010
    Publication date: September 12, 2013
    Applicant: ST. JUDE MEDICAL AB
    Inventors: Andreas Blomqvist, Torbjorn Persson, Rolf Hill
  • Patent number: 8532774
    Abstract: The present invention provides methods for detecting phrenic nerve stimulation. A pacing module is instructed to deliver pacing pulses having a predetermined pulse amplitude and/or width within the refractory period of the left ventricle. The pacing pulses are repeatedly delivered during a number of cardiac cycles and wherein the pacing pulses are delivered at different delays relative to an onset of the refractory period of the left ventricle in different cardiac cycles. Impedance signals are measured in time windows synchronized with the delivery of pacing pulses in the refractory period of the left ventricle using at least one electrode configuration. At least one impedance signal is gathered from each time window, aggregated impedance signals are created using the impedance signals from the different time windows, and the aggregated impedance signals are analyzed to detect PNS.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: September 10, 2013
    Assignee: St. Jude Medical AB
    Inventors: Sven-Erik Hedberg, Tomas Svensson, Kjell Noren, Stuart Rosenberg, Kyungmoo Ryu, Edward Karst
  • Patent number: 8523588
    Abstract: An implantable lead has a distal lead portion with at least one electrode electrically connected to a connector ring through a conductor running in a lumen of the lead. A proximal lead portion includes the connector ring, a connector pin and a connector coupling mechanically and coaxially connected to each other with the connector coupling as a bridging element. A rotational lock in the form of a circumferential element of an elastically deformable, flexible material is provided in the connector coupling in the interface between the coupling and the connector ring. This rotational lock prevents any rotation of the connector pin to be propagated into a rotation of the connector coupling and consequently reduces the risk of damages to internal lead components due to any such unintentional coupling rotation.
    Type: Grant
    Filed: April 29, 2009
    Date of Patent: September 3, 2013
    Assignee: St. Jude Medical AB
    Inventors: Mikael Forslund, Per Jarl, Marcus Helgesson
  • Patent number: 8527066
    Abstract: A medical implantable lead of the kind being adapted to be implanted into a human or animal body for monitoring and/or controlling of an organ inside the body has a penetrating fixation element in a distal end, which is adapted to penetrate into the tissue of the organ to fixate the lead such that a distal end of the lead will be in contact with the organ. The lead also has an electrode member to receive and/or transmit electrical signals from and/or to the organ. The lead has in a distal portion a movable member, which is displaceable in an axial direction of the lead and is actuated by a resilient member to be, in an initial state, maximally protruded in a distal direction in relation to the lead and which comprises a radiopaque material for forming of a first indication marker.
    Type: Grant
    Filed: December 19, 2008
    Date of Patent: September 3, 2013
    Assignee: St. Jude Medical AB
    Inventor: Johan Eckerdal
  • Patent number: 8527051
    Abstract: The present invention provides implantable medical devices for detecting phrenic nerve stimulation. A pacing module is configured to deliver pacing pulses having a predetermined pulse amplitude and/or width within the refractory period of the left ventricle. The pacing pulses are repeatedly delivered during a number of cardiac cycles, and the pacing pulses are delivered at different delays relative to an onset of the refractory period of the left ventricle in different cardiac cycles. An impedance measurement module is configured to measure impedance signals in time windows synchronized with the delivery of pacing pulses in the refractory period of the left ventricle. A phrenic nerve stimulation, PNS, detection module is configured to gather at least one impedance signal from each time window, create aggregated impedance signals using the impedance signals from the different time windows, and analyze the aggregated impedance signals to detect PNS.
    Type: Grant
    Filed: July 10, 2012
    Date of Patent: September 3, 2013
    Assignee: St. Jude Medical AB
    Inventors: Sven-Erik Hedberg, Tomas Svensson, Kjell Noren, Stuart Rosenberg, Kyungmoo Ryu, Edward Karst