Patents Assigned to State University
-
Patent number: 9934463Abstract: Neuromorphic computational circuitry is disclosed that includes a cross point resistive network and line control circuitry. The cross point resistive network includes variable resistive units. One set of the variable resistive units is configured to generate a correction line current on a conductive line while other sets of the variable resistive units generate resultant line currents on other conductive lines. The line control circuitry is configured to receive the line currents from the conductive lines and generate digital vector values. Each of the digital vector values is provided in accordance with a difference between the current level of a corresponding resultant line current and a current level of the correction line current. In this manner, the digital vector values are corrected by the current level of the correction line current in order to reduce errors resulting from finite on to off conductance state ratios.Type: GrantFiled: May 16, 2016Date of Patent: April 3, 2018Assignee: Arizona Board of Regents on behalf of Arizona State UniversityInventors: Jae-sun Seo, Shimeng Yu, Yu Cao, Sarma Vrudhula
-
Patent number: 9934339Abstract: A method includes obtaining information associated with a forming operation involving a manufacturing machine having a tool that contacts material. The method also includes simulating deformation of the material based on the information. Simulating the deformation of the material includes using discontinuity layout optimization to evaluate combinations of shear planes within an initial structure of the material, predict a mode of deformation comprising one or more of the shear planes along which the initial structure of the material will likely deform, and calculate a deformed shape of the material after an increment of deformation along the predicted mode of deformation. Simulating the deformation of the material also includes repeating the discontinuity layout optimization with the deformed shape of the material as the initial structure.Type: GrantFiled: August 15, 2014Date of Patent: April 3, 2018Assignee: Wichita State UniversityInventor: Viswanathan Madhavan
-
Patent number: 9931611Abstract: Articles are provided for absorbing fluids. In embodiments, the articles of the present disclosure are modified to make them hydrophobic, thereby decreasing their affinity for water and similar liquids, while increasing their affinity for other hydrophobic materials, including oil. After use, the articles, in embodiments polyurethane sponges, may have their absorbed materials removed therefrom, and the articles may then be reused to absorb additional materials.Type: GrantFiled: November 4, 2014Date of Patent: April 3, 2018Assignee: The Research Foundation for the State University of New YorkInventors: Benjamin Chu, Benjamin Hsiao, Zhe Wang
-
Publication number: 20180086640Abstract: The method of the present disclosure is directed towards the formation of a three-dimensional carbon structure and includes the steps of adding a radical initiator to an amount of carbon starting material, forming a mixture, placing the mixture in a mold, maintaining the mixture and the mold at an elevated temperature for a period of time to form a thermally cross-linked molded mixture and removing the thermally cross-linked molded mixture from the mold. The disclosure also includes a three-dimensional carbon structure, with that structure including a thermally cross-linked carbon base material in a predetermined formation.Type: ApplicationFiled: November 14, 2017Publication date: March 29, 2018Applicant: The Research Foundation for The State University of New YorkInventors: Balaji Sitharaman, Gaurav Lalwani
-
Patent number: 9927363Abstract: Systems and methods for a real-time baseline correction technique for infrared time-resolved photoluminescence are disclosed.Type: GrantFiled: March 24, 2016Date of Patent: March 27, 2018Assignee: Arizona Board of Regents on behalf of Arizona State UniversityInventors: Zhi-Yuan Lin, Yong-Hang Zhang
-
Patent number: 9925159Abstract: D-serine is used to treat a neurological disorder, such as epilepsy, that cases seizures. A composition comprising D-serine is artificially administered to a patient in an effective amount by selectively contacting a region of the patient's brain with the composition. The region of the brain selectively contacted with the composition has cells expressing GluN3 subunit-containing triheteromeric NMDARs.Type: GrantFiled: May 15, 2015Date of Patent: March 27, 2018Assignee: The Florida State University Research Foundation, Inc.Inventor: Sanjay Kumar
-
Patent number: 9926392Abstract: The present invention relates to a thermoplastic block copolymer comprising at least one PA block and at least one PB block. The PA block represents a polymer block comprising one or more units of monomer A, and the PB block represents a polymer block comprising one or more units of monomer B. Monomer A is a vinyl, acrylic, diolefin, nitrile, dinitrile, acrylonitrile monomer, a monomer with reactive functionality, or a crosslinking monomer. Monomer B is a radically polymerizable triglyceride or mixtures thereof, typically in the form of a plant or animal oil. The present invention also relates to a method of preparing a thermoplastic block copolymer or novel thermoplastic statistical copolymers by polymerizing a radically polymerizable monomer with a radically polymerizable triglyceride or mixtures thereof via reversible addition-fragmentation chain-transfer polymerization (RAFT), in the presence of an free radical initiator and a chain transfer agent.Type: GrantFiled: April 14, 2017Date of Patent: March 27, 2018Assignee: Iowa State University Research Foundation, Inc.Inventors: Eric W. Cochran, Ronald Christopher Williams, Nacu Hernandez, Andrew Cascione
-
Patent number: 9924706Abstract: The present invention includes a new type of bait for wood-targeting pest baiting systems and methods of obtaining the bait. Certain embodiments of the present invention include a blue-stained wood either treated with a solution that includes blue-stain fungi or wood naturally infected with blue-stain fungi. Additional embodiments of the present invention include a blue-stained solution that may be applied to a wood substrate or to a non-wood bait matrix.Type: GrantFiled: May 13, 2013Date of Patent: March 27, 2018Assignee: Mississippi State UniversityInventors: Nathan S. Little, John J. Riggins, Tor P Schultz
-
Patent number: 9926201Abstract: A method, apparatus, and system for fabricating buckypaper or similar sheets of nanostructures having relatively high aspect ratios. A dispersion of nanostructures such as nanotubes is subjected to fluid dynamics/forces which promote alignment of their axes of elongation while in suspension in the flow. An agglomeration of better aligned nanostructures is isolated from the carrier fluid into a useable form. In the case of nanotubes, one form is buckypaper. One example of alignment forces is Taylor-Couette flow shear forces. One example of isolation is filtering the flowing dispersion to collect better aligned nanostructures across the filter into a sheet or film. The degree of alignment can produce anisotropic material properties that can be beneficially used in application of the sheet or film.Type: GrantFiled: July 18, 2014Date of Patent: March 27, 2018Assignee: Iowa State University Research Foundation, Inc.Inventors: Michael R. Kessler, Daniel Vennerberg
-
Patent number: 9925035Abstract: Implantable passive engineered mechanisms and a method for implanting such devices in a subject are described. The implantable passive engineered mechanism may be made of or comprise a biocompatible material and is appropriately sized for implantation in a subject. Exemplary implantable passive engineered mechanisms may be selected from a strut, a pulley, a lever, a compliant mechanism, a scissor lift, a tendon network, springs, planetary gears, rigid or soft hydraulics, a linkage system, a cam/clutch system, or combinations thereof. In some embodiments the system comprises plural inserts, such as pulleys, levers, and/or tendon networks. Plural inserts may be arranged hierarchically to distribute force differentially from an input to one or more outputs.Type: GrantFiled: May 29, 2015Date of Patent: March 27, 2018Assignee: Oregon State UniversityInventors: Ravi Balasubramanian, Taymaz Homayouni, Francisco Valero-Cuevas
-
Patent number: 9929332Abstract: The present disclosure relates to flexible thermoelectric devices. In some embodiments, such devices can comprise a flexible substrate with a first conductive component and a second, different conductive component deposited thereon so as to form a plurality of electrical junctions. The flexible substrate can be a fabric, and the conductive component can be deposited by methods such as stitching of conductive yarns or deposition of conductive inks. The present disclosure further relates to methods of preparing flexible thermoelectric devices and methods of utilizing flexible thermoelectric devices for producing electrical current from waste heat.Type: GrantFiled: April 23, 2015Date of Patent: March 27, 2018Assignee: North Carolina State UniversityInventors: Jesse Jur, Mark Losego, Patrick E. Hopkins
-
Patent number: 9926261Abstract: Disclosed herein are compounds of formula I: and salts thereof. Also disclosed are compositions comprising of compounds of formula I and methods using compounds of formula I.Type: GrantFiled: March 10, 2016Date of Patent: March 27, 2018Assignee: Rutgers, The State University of New JerseyInventors: Edmond J. LaVoie, Ajit K. Parhi, Gifty A. Blankson, Malvika Kaul, Daniel S. Pilch
-
Publication number: 20180077989Abstract: Various embodiments of a spiral shaped element and wavy suture are disclosed for use in a shock mitigating material to dissipate the energy associated with the impact of an object. The shock mitigating material can be used in helmets, bumpers, bulletproof vests, mats, pads, military armor, and other applications. One embodiment, among others, is a shock mitigating material having spiral shaped elements, each having a circular cross section and each being tapered from a large outside end to a small inside end but also having a suture or sutures that can induce shear waves to mitigate the shock pressure and impulse. Another embodiment is a shock mitigating material having sutures (wavy gaps or wavy materials). In this embodiment when the material is impacted, the wavy gap or material will induce a mechanism in shear to dissipate the impact energy.Type: ApplicationFiled: August 7, 2017Publication date: March 22, 2018Applicant: Mississippi State UniversityInventor: Mark F. Horstemeyer
-
Publication number: 20180080210Abstract: A splash prevention apparatus is disclosed. The splash prevention apparatus may be placed on a surface to capture satellite droplets that would result from a liquid impinging upon the surface. The splash prevention device is designed to be particularly effective when used inside a urinal to capture impinging urine. In embodiments, a splash prevention device includes a planar base pad, which may be designed to either fit the shape of the base of a urinal or to resemble other easily recognizable shapes. In embodiments, a pillar array extends from the planar base pad and the pillars may be made of a material that will bend when impinged upon by a stream of urine. Both the base pad and pillar array of a splash prevention device may be formed from rigid or deformable material. The pillar array may be arranged in a Cartesian or non-Cartesian pattern.Type: ApplicationFiled: September 13, 2017Publication date: March 22, 2018Applicant: Utah State UniversityInventors: Randy C. Hurd, Tadd T. Truscott, Zhao Pan, Andrew S. Merritt
-
Publication number: 20180083064Abstract: Some embodiments include a method. The method can include: providing a carrier substrate; forming a first device material over the carrier substrate; and after forming the first device material over the carrier substrate, transforming the first device material into a second device material. Meanwhile, the transforming the first device material into the second device material can include: causing a cationic exchange in the first device material; and causing an anionic exchange in the first device material. The causing the cationic exchange in the first device material and the causing the anionic exchange in the first device material can occur approximately simultaneously. Other embodiments of related methods and systems are also disclosed.Type: ApplicationFiled: December 1, 2017Publication date: March 22, 2018Applicant: Arizona Board of Regents, Acting for and on Behalf of Arizona State UniversityInventors: Cun-Zheng Ning, Sunay Turkdogan, Zhicheng Liu, Fan Fan
-
Publication number: 20180077991Abstract: Various embodiments of a spiral shaped element and wavy suture are disclosed for use in a shock mitigating material to dissipate the energy associated with the impact of an object. The shock mitigating material can be used in helmets, bumpers, bulletproof vests, mats, pads, foot gear, military armor, and other applications. One embodiment, among others, is a shock mitigating material having spiral shaped elements, each having a circular cross section and each being tapered from a large outside end to a small inside end but also having a suture or sutures that can induce shear waves to mitigate the shock pressure and impulse. Another embodiment is a shock mitigating material having sutures (wavy gaps or wavy materials). In this embodiment when the material is impacted, the wavy gap or material will induce a mechanism in shear to dissipate the impact energy and action.Type: ApplicationFiled: August 7, 2017Publication date: March 22, 2018Applicant: Mississippi State UniversityInventor: Mark F. Horstemeyer
-
Patent number: 9918480Abstract: Methods and compositions for controlling the growth of an invasive species by application of a composition comprised of a natural pesticide derived from a species to the invasive species, especially endocides. Disclosed herein are methods and compositions for controlling the growth of a first invasive species by application of a composition comprising a natural pesticide derived from a second invasive species to the first invasive species. In some embodiments, the invasive species is an invasive species with glands as the primary accumulation sites of autotoxic chemicals. The first and second invasive species may be the same or they may be different. In some embodiments, the natural pesticide may be an endocide. An endocide (endogenous biocide) is a biocide derived from an endogenous bioactive agent (e.g., a secondary metabolite) that does not cause apparent poison in normal growth of the producing species but will poison or inhibit and even eliminate the parent species when induced in producing species.Type: GrantFiled: May 5, 2014Date of Patent: March 20, 2018Assignee: Stephen F. Austin State UniversityInventors: Shiyou Li, Ping Wang, Wei Yuan, Zushang Su, Steven H. Bullard
-
Patent number: 9919998Abstract: The invention provides compounds having activity as bacterial RNA polymerase inhibitors and antibacterial agents, as well as compositions comprising the compounds and methods for their use. Specifically, phenylalanineamide and tyrosinamide compounds are disclosed that have inhibitory activity toward mycobacterium tuberculosis RNA polymerase. Use of these compounds in the treatment or prevention of M. tuberculosis infections in a mammal, is disclosed.Type: GrantFiled: February 6, 2015Date of Patent: March 20, 2018Assignee: Rutgers, The State University of New JerseyInventors: Richard H. Ebright, Yon W. Ebright, Soma Mandal, Richard Wilde, Shengjian Li
-
Patent number: 9920220Abstract: Embodiments of films and material layers comprising PEDOT. These embodiments are the result of methods that utilize polymerization processes including vapor phase polymerization (VPP) to form the conductive film comprising PEDOT. In one embodiment, the film can result from a method that includes steps for depositing a coating solution onto a substrate, exposing the substrate to a monomer source, and cleaning the substrate after polymerization. The coating solution can comprise an initiating oxidant, which facilitates growth of PEDOT from 3,4 ethylenedioxythiophene (EDOT), as well as a quenching agent that neutralizes acid that results from polymerization.Type: GrantFiled: March 14, 2014Date of Patent: March 20, 2018Assignee: The Research Foundation of State University of New YorkInventors: William E. Bernier, Nicholas A. Ravvin, Wayne E. Jones, Jr., Kenneth H. Skorenko
-
Patent number: 9920302Abstract: The present invention relates to a vaccine for protecting a piglet against diseases associated with a novel pestivirus. The vaccine commonly includes a pestivirus antigen and, optionally an adjuvant. Methods for protecting pigs against diseases associated with pestivirus, including but not limited to congenital tremors and methods of producing the pestivirus vaccine are also provided.Type: GrantFiled: August 31, 2016Date of Patent: March 20, 2018Assignees: Boehringer Ingelheim Vetmedica GmbH, Iowa State University Research Foundation, Inc.Inventors: Joseph Gilbert Victoria, Abby Rae Patterson, Callie Ann Visek, Arun V. Iyer, Lea Ann Hobbs, Bailey Lauren Arruda, Paulo Henrique Elias Arruda, Drew Robert Magstadt, Kent Jay Schwartz