Abstract: An apparatus and method for determining the temperature of a semiconductor wafer in a thermal processing chamber in the presence of a radiation absorbing gas, such as a vapor, is disclosed. The apparatus includes a temperature sensing device which senses the amount of electromagnetic radiation being emitted by a wafer being heated and a gas sensing device which senses the amount of a gas present within the chamber. The system further includes a controller which is placed in communication with the temperature sensing device and the gas sensing device. The controller is configured to determine a correction factor based upon the amount of gas contained within the chamber. The correction factor in combination with information received from the temperature sensing device are then used to determine the temperature of the wafer.
Abstract: A method of rapid thermal processing (RTP) of a silicon substrate is presented, where a very low partial pressure of reactive gas is used to control etching and growth of oxides on the silicon surface.
Type:
Grant
Filed:
July 1, 1997
Date of Patent:
August 8, 2000
Assignee:
Steag RTP Systems
Inventors:
Zsolt Nenyei, Wilfried Lerch, Helmut Sommer
Abstract: A method for rapid thermal processing (RTP) of a silicon substrate, the substrate having a surface with a plurality of areas implanted with dopant ions, comprising a) contacting the surface with a reactive gas, b) processing the substrate for a first process time and temperature sufficient to produce a significant protective layer upon the surface, and c) annealing the substrate for a second process time and temperature sufficient to activate the dopant material so that the sheet resistivity of the implanted areas is less than 500 ohms/square, where the first and second processing time and temperature are insufficient to move the implanted dopant ions to a depth of more than 80 nanometers from the surface.
Type:
Grant
Filed:
January 29, 1998
Date of Patent:
June 20, 2000
Assignee:
Steag RTP Systems GmbH
Inventors:
Steven D. Marcus, Frederique Glowacki, Barbara Froeschle
Abstract: A process and system for preventing gases from either leaking into or out of a thermal processing chamber that is designed to operate at or near atmospheric pressure is disclosed. For instance, in one embodiment, gases are prevented from leaking into a thermal processing chamber by maintaining the pressure within the chamber at levels that are slightly greater than atmospheric pressure. In an alternative embodiment, in order to prevent gases from leaking out of the chamber, the pressure within the chamber is maintained at levels slightly less than atmospheric pressure. During operation of the thermal processing chamber, a gas is continuously circulated through the chamber. In order to carry out the process of the present invention, a pressure control device can be placed upon the gas outlet for maintaining the pressure within the chamber within a desired range.
Type:
Grant
Filed:
August 7, 1997
Date of Patent:
June 13, 2000
Assignee:
Steag RTP Systems, Inc.
Inventors:
Sing Pin Tay, Yao Zhi Hu, Yuval Wasserman
Abstract: The present invention is generally directed to a system and process for accurately determining the temperature of an object, such as a semiconductive wafer, by sensing and measuring the object radiation being emitted at a particular wavelength. In particular, a reflective device is placed adjacent to the radiating object, which causes thermal radiation being emitted by the wafer to be reflected multiple times. The reflected thermal radiation is then monitored using a light detector. Additionally, a reflectometer is contained within the system which independently measures the reflectivity of the object. The temperature of the object is then calculated using not only the thermal radiation information but also the information received from the reflectometer.
Abstract: A plurality of substrates is closely stacked together in a Rapid Thermal Processing (RTP) chamber, and the stack is processed simultaneously.
Type:
Grant
Filed:
April 11, 1997
Date of Patent:
April 18, 2000
Assignee:
Steag RTP Systems
Inventors:
Helmut Sommer, Manuela Zwissler, Herbert Kegel
Abstract: The present invention is generally directed to a system and process for accurately determining the temperature of an object, such as a semi-conductive wafer, by sampling from the object radiation being emitted at a particular wavelength. In one embodiment, a single reflective device is placed adjacent to the radiating object. The reflective device includes areas of high reflectivity and areas of low reflectivity. The radiation being emitted by the object is sampled within both locations generating two different sets of radiation measurements. The measurements are then analyzed and a correction factor is computed based on the optical characteristics of the reflective device and the optical characteristics of the wafer. The correction factor is then used to more accurately determine the temperature of the wafer. In an alternative embodiment, if the radiating body is semi-transparent, a reflective device is placed on each side of the object, which compensates for the transparency of the object.
Abstract: An apparatus, method, and system for Rapid Thermal Processing (RTP), whereby the object to be processed is rotated under the radiation sources of the RTP system by a gas jet system, is presented.
Type:
Grant
Filed:
November 24, 1997
Date of Patent:
December 21, 1999
Assignee:
Steag-RTP Systems
Inventors:
Helmut Aschner, Andreas Hauke, Ulrich Walk, Dieter Zernickel
Abstract: The present invention is generally directed to a system and process for accurately determining the temperature of an object, such as a semi-conductive wafer, by sampling from the object radiation being emitted at a particular wavelength. In one embodiment, a single reflective device is placed adjacent to the radiating object. The reflective device includes areas of high reflectivity and areas of low reflectivity. The radiation being emitted by the object is sampled within both locations generating two different sets of radiation measurements. The measurements are then analyzed and a correction factor is computed based on the optical characteristics of the reflective device and the optical characteristics of the wafer. The correction factor is then used to more accurately determine the temperature of the wafer. In an alternative embodiment, if the radiating body is semi-transparent, a reflective device is placed on each side of the object, which compensates for the transparency of the object.
Abstract: The present invention is generally directed to a process and a system for transforming a liquid into a solid material using light energy. In particular, a solution containing a parent material in a liquid form is atomized in a reaction vessel and directed towards a substrate. The atomized liquid is exposed to light energy which causes the parent material to form a solid coating on a substrate. The light energy can be provided from one or more lamps and preferably includes ultraviolet light. Although the process of the present invention is well suited for use in many different and various applications, one exemplary application is in depositing a dielectric material on a substrate to be used in the manufacture of integrated circuit chips.