Patents Assigned to Stion Corporation
  • Patent number: 8377736
    Abstract: The present invention provides methods for fabricating a copper indium diselenide semiconductor film. The method includes providing a plurality of substrates having a copper and indium composite structure, and including a peripheral region, the peripheral region including a plurality of openings, the plurality of openings including at least a first opening and a second opening. The method includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the furnace including a holding apparatus. The method further includes introducing a gaseous species into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to at least initiate formation of a copper indium diselenide film on each of the substrates.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: February 19, 2013
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 8372684
    Abstract: The method and system for selenization in fabricating CIS and/or CIGS based thin film solar cell overlaying cylindrical glass substrates. The method includes providing a substrate, forming an electrode layer over the substrate and depositing a precursor layer of copper, indium, and/or gallium over the electrode layer. The method also includes disposing the substrate vertically in a furnace. Then a gas including a hydrogen species, a selenium species and a carrier gas are introduced into the furnace and heated to between about 350° C. and about 450° C. to at least initiate formation of a copper indium diselenide film from the precursor layer.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: February 12, 2013
    Assignee: Stion Corporation
    Inventors: Robert D. Wieting, Steven Aragon, Chester A. Farris, III
  • Patent number: 8344243
    Abstract: A method for forming a thin film photovoltaic device. The method provides a transparent substrate including a surface region. A first electrode layer overlies the surface region. A copper layer is formed overlying the first electrode layer and an indium layer is formed overlying the copper layer to form a multi-layered structure. At least the multi-layered structure is subjected to a thermal treatment process in an environment containing a sulfur bearing species to forming a bulk copper indium disulfide. The bulk copper indium disulfide material has a surface region characterized by a copper poor surface region having a copper to indium atomic ratio of less than about 0.95:1 and n-type impurity characteristics. The bulk copper indium disulfide material excluding the copper poor surface region forms an absorber region and the copper poor surface region forms at least a portion of a window region for the thin film photovoltaic device.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: January 1, 2013
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Publication number: 20120302002
    Abstract: A method for processing a thin-film absorber material with enhanced photovoltaic efficiency includes forming a barrier layer on a soda lime glass substrate followed by formation of a stack structure of precursor layers. The method further includes subjecting the soda-lime glass substrate with the stack structure to a thermal treatment process with at least H2Se gas species at a temperature above 400° C. to cause formation of an absorber material. By positioning the substrates close together, during the process sodium from an adjoining substrate in the furnace also is incorporated into the absorber layer.
    Type: Application
    Filed: November 30, 2011
    Publication date: November 29, 2012
    Applicant: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 8318531
    Abstract: thermal management for large scale processing of CIS and/or CIGS based thin film is described. The method includes providing a plurality of substrates, each of the substrates having a copper and indium composite structure. The method also includes transferring the plurality of substrates into a furnace, each of the plurality of substrates provided in a vertical orientation with respect to a direction of gravity, the plurality of substrates being defined by a number N, where N is greater than 5. The method further includes introducing a gaseous species including a selenide species and a carrier gas into the furnace and transferring thermal energy into the furnace to increase a temperature from a first temperature to a second temperature, to at least initiate formation of a copper indium diselenide film.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: November 27, 2012
    Assignee: Stion Corporation
    Inventor: Robert D. Wieting
  • Patent number: 8314326
    Abstract: A photovoltaic device and related methods. The device has a structured material positioned between an electron collecting electrode and a hole collecting electrode. An electron transporting/hole blocking material is positioned between the electron collecting electrode and the structured material. In a specific embodiment, negatively charged carriers generated by optical absorption by the structured material are preferentially separated into the electron transporting/hole blocking material. In a specific embodiment, the structured material has an optical absorption coefficient of at least 103 cm?1 for light comprised of wavelengths within the range of about 400 nm to about 700 nm.
    Type: Grant
    Filed: August 16, 2011
    Date of Patent: November 20, 2012
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Publication number: 20120285508
    Abstract: A multi junction photovoltaic cell device includes a lower cell and an upper cell operably coupled to the lower cell. The lower cell includes a lower glass substrate material, a lower electrode, and a first terminal coupled to the lower electrode through the lower glass substrate material. The lower cell includes a lower absorber characterized by a bandgap smaller than 1 eV overlying the lower electrode and a lower window overlying the lower absorber and a lower transparent-conductive oxide coupled to a second terminal overlying the lower window. The upper cell includes a p+-type transparent conductor coupled to a third terminal. The upper cell further has an upper p-type absorber with a bandgap in a range of 1.6 to 1.9 eV overlying the p+-type transparent conductor and has an upper n-type window overlying the upper p-type absorber, an upper transparent-conductive oxide coupled to a fourth terminal overlying the upper n-type window.
    Type: Application
    Filed: November 11, 2011
    Publication date: November 15, 2012
    Applicant: Stion Corporation
    Inventor: Howard W.H. Lee
  • Publication number: 20120276682
    Abstract: A system for large scale manufacture of thin film photovoltaic cells includes a chamber comprising a plurality of compartments in a common vacuum ambient therein. Additionally, the system includes one or more shutter screens removably separating each of the plurality of compartments. The system further includes one or more transfer tools configured to transfer a substrate from one compartment to another without breaking the common vacuum ambient. The substrate is optically transparent and is characterized by a lateral dimension of about 1 meter or greater for a solar module. Embodiments of the invention provide compartments configured to subject the substrate to one or more thin film processes to form a Cu-rich Cu—In composite material overlying the substrate and at least one of the plurality of compartments is configured to subject the Cu-rich Cu—In composite material to a thermal process to form a chalcogenide structured material.
    Type: Application
    Filed: April 25, 2012
    Publication date: November 1, 2012
    Applicant: STION CORPORATION
    Inventors: Howard W. H. Lee, Chester A. Farris, III
  • Publication number: 20120270361
    Abstract: A method for large scale manufacture of photovoltaic devices includes loading a substrate into a load lock station and transferring the substrate in a controlled ambient to a first process station. The method includes using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate. The method includes transferring the substrate to a second process station, and using a second physical deposition process in the second process station to cause formation of a second layer overlying the surface region of the substrate. The method further includes repeating the transferring and processing until all thin film materials of the photovoltaic devices are formed. In an embodiment, the invention also provides a method for large scale manufacture of photovoltaic devices including feed forward control.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 25, 2012
    Applicant: Stion Corporation
    Inventors: Howard W. H. Lee, Chester A. Farris, III
  • Publication number: 20120270341
    Abstract: A method for large scale manufacture of photovoltaic devices includes loading a substrate into a load lock station and transferring the substrate in a controlled ambient to a first process station. The method includes using a first physical deposition process in the first process station to cause formation of a first conductor layer overlying the surface region of the substrate. The method includes transferring the substrate to a second process station, and using a second physical deposition process in the second process station to cause formation of a second layer overlying the surface region of the substrate. The method further includes repeating the transferring and processing until all thin film materials of the photovoltaic devices are formed. In an embodiment, the invention also provides a method for large scale manufacture of photovoltaic devices including feed forward control.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 25, 2012
    Applicant: Stion Corporation
    Inventors: Howard W. H. Lee, Chester A. Farris, III
  • Publication number: 20120264072
    Abstract: An apparatus for performing reactive thermal treatment of thin film photovoltaic devices includes a furnace having a tubular body surrounded by heaters and cooling devices. The apparatus includes cooled doors at ends of the furnace separated from a central portion of the furnace by baffles. The cooled doors facilitate increased convection within the furnace and improve temperature uniformity.
    Type: Application
    Filed: January 18, 2012
    Publication date: October 18, 2012
    Applicant: Stion Corporation
    Inventor: Ashish Tandon
  • Patent number: 8287942
    Abstract: A method for forming a semiconductor bearing thin film material. The method includes providing a metal precursor and a chalcogene precursor. The method forms a mixture of material comprising the metal precursor, the chalcogene precursor and a solvent material. The mixture of material is deposited overlying a surface region of a substrate member. In a specific embodiment, the method maintains the substrate member including the mixture of material in an inert environment and subjects the mixture of material to a first thermal process to cause a reaction between the metal precursor and the chalcogene material to form a semiconductor metal chalcogenide bearing material overlying the substrate member. The method then performs a second thermal process to remove any residual solvent and forms a substantially pure semiconductor metal chalcogenide thin film material overlying the substrate member.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: October 16, 2012
    Assignee: Stion Corporation
    Inventors: Jinman Huang, Howard W. H. Lee
  • Publication number: 20120240989
    Abstract: A method for fabricating a thin film photovoltaic device is provided. The method includes providing a substrate comprising a thin film photovoltaic absorber which has a surface including copper, indium, gallium, selenium, and sulfur. The method further includes subjecting the surface to a material containing at least a zinc species substantially free of any cadmium. The surface is heated to cause formation of a zinc doped material. The zinc doped material is free from cadmium. Furthermore the method includes forming a zinc oxide material overlying the zinc doped material and forming a transparent conductive material overlying the zinc oxide material.
    Type: Application
    Filed: September 19, 2011
    Publication date: September 27, 2012
    Applicant: Stion Corporation
    Inventors: Kannan Ramanathan, Robert D. Wieting
  • Publication number: 20120237885
    Abstract: An apparatus for uniform reactive thermal treatment of thin-film materials includes a chamber enclosing a tube shaped space filled with a work gas and heaters disposed outside the chamber. The apparatus further includes a loading configuration for subjecting a plurality of planar substrates to the work gas in the tube shaped space. Baffles are disposed above and below the loading configuration.
    Type: Application
    Filed: January 4, 2012
    Publication date: September 20, 2012
    Applicant: Stion Corporation
    Inventors: Paul Alexander, Steven Aragon
  • Patent number: 8263494
    Abstract: A method for patterning a thin film photovoltaic panel on a substrate characterized by a compaction parameter. The method includes forming molybdenum material overlying the substrate and forming a first plurality of patterns in the molybdenum material to configure a first patterned structure having a first inter-pattern spacing. Additionally, the method includes forming a precursor material comprising at least copper bearing species and indium bearing species overlying the first patterned structure. Then the substrate including the precursor material is subjected to a thermal processes to form at least an absorber structure.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: September 11, 2012
    Assignee: Stion Corporation
    Inventor: Frank Patterson
  • Patent number: 8258000
    Abstract: A method for forming a thin film photovoltaic device is provided. The method includes providing a transparent substrate comprising a surface region. A first electrode layer is formed overlying the surface region. A chalcopyrite material is formed overlying the first electrode layer. In a specific embodiment, the chalcopyrite material comprises a copper poor copper indium disulfide region. The copper poor copper indium disulfide region having an atomic ratio of Cu:In of about 0.95 and less. The method includes compensating the copper poor copper indium disulfide region using a sodium species to cause the chalcopyrite material to change from an n-type characteristic to a p-type characteristic. The method includes forming a window layer overlying the chalcopyrite material and forming a second electrode layer overlying the window layer.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: September 4, 2012
    Assignee: Stion Corporation
    Inventor: Howard W. H. Lee
  • Patent number: 8247257
    Abstract: A method for providing a semiconductor material for photovoltaic devices, the method includes providing a sample of iron disilicide comprising approximately 90 percent or greater of a beta phase entity. The sample of iron disilicide is characterized by a substantially uniform first particle size ranging from about 1 micron to about 10 microns. The method includes combining the sample of iron disilicide and a binding material to form a mixture of material. The method includes providing a substrate member including a surface region and deposits the mixture of material overlying the surface region of the substrate. In a specific embodiment, the mixture of material is subjected to a post-deposition process such as a curing process to form a thickness of material comprising the sample of iron disilicide overlying the substrate member. In a specific embodiment, the thickness of material is characterized by a thickness of about the first particle size.
    Type: Grant
    Filed: October 6, 2011
    Date of Patent: August 21, 2012
    Assignee: Stion Corporation
    Inventors: Howard W. H. Lee, Frederic Victor Mikulec, Bing Shen Gao, Jinman Huang
  • Publication number: 20120204939
    Abstract: A tandem thin-film photovoltaic module includes a bottom device having a first PV junction including a p+ type absorber having an energy band-gap ranging from 1.0 to 1.2 eV, sandwiched between a first transparent electrode and a lower reflective electrode. The tandem module also includes a top device mechanically coupled to the bottom device. The top device is a bi-facial device having a second PV junction sandwiched by transparent conductive oxide electrodes. The second PV junction includes a second p+ type absorber engineered with an energy band-gap within 1.7 to 2.0 eV. A tandem thin-film photovoltaic module is configured have a superstrate for the top device for receiving sunlight radiation. The tandem thin-film photovoltaic module is configured to covert high-energy electromagnetic radiation to electric current at the top device and convert low-energy electromagnetic radiation to electric current at the bottom device with a combined conversion efficiency of 18% or greater.
    Type: Application
    Filed: August 15, 2011
    Publication date: August 16, 2012
    Applicant: Stion Corporation
    Inventors: Howard W. H. Lee, Robert D. Wieting
  • Patent number: 8241943
    Abstract: A method of sodium doping in fabricating CIGS/CIS based thin film solar cells includes providing a shaped substrate member. The method includes forming a barrier layer over the surface region followed by a first electrode layer, and then a sodium bearing layer. A precursor layer of copper, indium, and/or gallium materials having an atomic ratio of copper/group III species no greater than 1.0 is deposited over the sodium bearing layer. The method further includes transferring the shaped substrate member to a second chamber and subjecting it to a thermal treatment process within an environment comprising gas-phase selenium species, followed by an environment comprising gas-phase sulfur species with the selenium species being substantially removed to form an absorber layer.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: August 14, 2012
    Assignee: Stion Corporation
    Inventors: Robert D. Wieting, Steven Aragon, Chester A. Farris, III
  • Publication number: 20120199065
    Abstract: A system for in-line substrate processing includes a horizontal rail structure at a first height. A substrate transfer module next to the rail structure receives substrates ready for processing and delivers substrates after processing. Process modules disposed along the rail structure enable process operations on the substrates. A substrate loader moves along the rail structure and transfers substrates to and from the substrate transfer module and to and from the process modules. A controller manages operation of the system.
    Type: Application
    Filed: February 1, 2012
    Publication date: August 9, 2012
    Applicant: Stion Corporation
    Inventors: Robert D. Wieting, Kenneth B. Doering