Abstract: A memory management device including a plurality of outputs, each output configured to interface to respective one of a plurality of memories; and a controller configured to cause each buffer allocated to the memories to be divided up substantially equally between each of the plurality of memories.
Abstract: A semiconductor package is provided, including a laminate substrate with an aperture sized to receive a semiconductor die. Through-holes in the substrate are filled with a thermally conductive adhesive. A first heat spreader is attached to the by the adhesive, and a semiconductor die is positioned in the aperture with a back face in thermal contact with the heat spreader. Wire bonds couple the die to electrical traces on the substrate. A second heat spreader is attached by the adhesive to the substrate over the die, directly opposite the first heat spreader. A portion of the second heat spreader is encapsulated in molding compound. Openings in the second heat spreader admits molding compound to fill the space around the die between the heat spreaders. Heat is transmitted from the die to the first spreader, and thence, via the through-holes and conductive paste, to the second heat spreader.
Type:
Application
Filed:
October 18, 2011
Publication date:
April 18, 2013
Applicant:
STMICROELECTRONICS ASIA PACIFIC PTE LTD.
Abstract: A device and method for detecting a short circuit in an electrical component during a start-up routine. In an embodiment, a device may have a problematic display having a short circuit that may result in damage to other components of the device if the device were allowed to fully startup during a normal start-up routine. Thus, power supplied to the panel may be initiated in stages so as to monitor any current that may be flowing through the panel, which in turn, may be indicative of a short circuit in the panel. If enough “leakage” current is detected through the panel during this staged startup routine, then a short-circuit detection circuit may interrupt the startup routine and lock out the operation of the device until the detected short circuit in the panel can be addressed.
Abstract: A support structure includes an internal cavity. An elastic membrane extends to divide the internal cavity into a first chamber and a second chamber. The elastic membrane includes a nanometric-sized pin hole extending there through to interconnect the first chamber to the second chamber. The elastic membrane is formed of a first electrode film and a second electrode film separated by a piezo insulating film. Electrical connection leads are provided to support application of a bias current to the first and second electrode films of the elastic membrane. In response to an applied bias current, the elastic membrane deforms by bending in a direction towards one of the first and second chambers so as to produce an increase in a diameter of the pin hole.
Abstract: An embodiment of a process for manufacturing an electronic device on a semiconductor body of a material with wide forbidden bandgap having a first conductivity type.
Abstract: A request routing circuit includes m inputs for receiving m input request signals and n outputs for outputting a set of n output request signals. A routing subsystem within the request routing circuit is provided between the m inputs and the n outputs and comprises k inputs and n outputs, where m is greater than k, and where the routing subsystem is configured to operate over a plurality (m/k, rounded up to the next integer) of cycles to provide the set of n output request signals based on the m inputs to the n outputs.
Abstract: A method for producing at least one deep trench isolation in a semiconductor substrate including silicon and having a front side may include forming at least one cavity in the semiconductor substrate from the front side. The method may include conformally depositing dopant atoms on walls of the cavity, and forming, in the vicinity of the walls of the cavity, a silicon region doped with the dopant atoms. The method may further include filling the cavity with a filler material to form the at least one deep trench isolation.
Abstract: A leadframe includes a die pad and a protective wall surrounding the die pad. A semiconductor die is situated on the die pad. Indentations are formed on the four inner corners of the protective wall adjacent the corners of the semiconductor die.
Type:
Application
Filed:
October 13, 2011
Publication date:
April 18, 2013
Applicant:
STMICROELECTRONICS PTE LTD.
Inventors:
Xueren Zhang, Wingshenq Wong, Kim-Yong Goh, Yiyi Ma
Abstract: The broadcasting of audio contents by two loudspeakers is controlled by delivering a first audio content to the two loudspeakers and a further processing in which an auxiliary audio content is received. A second audio content is formed by temporally delaying the auxiliary audio content with a delay dependent on the spacing between the loudspeakers and on a distance between a first loudspeaker and a spot located in front of this first loudspeaker. The second audio content is delivered to the first loudspeaker. A third audio content is formed by inverting the auxiliary audio content. The third audio content is then delivered to the second loudspeaker.
Abstract: A MOS transistor formed in an active area of a semiconductor substrate and having a polysilicon gate doped according to a first conductivity type, the gate including two lateral regions of the second conductivity type.
Abstract: A method for the formation of buried cavities within a semiconductor body envisages the steps of: providing a wafer having a bulk region made of semiconductor material; digging, in the bulk region, trenches delimiting between them walls of semiconductor material; forming a closing layer for closing the trenches in the presence of a deoxidizing atmosphere so as to englobe the deoxidizing atmosphere within the trenches; and carrying out a thermal treatment such as to cause migration of the semiconductor material of the walls and to form a buried cavity. Furthermore, before the thermal treatment is carried out, a barrier layer that is substantially impermeable to hydrogen is formed on the closing layer on top of the trenches.
Type:
Grant
Filed:
September 1, 2010
Date of Patent:
April 16, 2013
Assignee:
STMicroelectronics S.r.l.
Inventors:
Gabriele Barlocchi, Pietro Corona, Dino Faralli, Flavio Francesco Villa
Abstract: Power MOS device of the type comprising a plurality of elementary power MOS transistors having respective gate structures and comprising a gate oxide with double thickness having a thick central part and lateral portions of reduced thickness. Such device exhibiting gate structures comprising first gate conductive portions overlapped onto said lateral portions of reduced thickness to define, for the elementary MOS transistors, the gate electrodes, as well as a conductive structure or mesh. Such conductive structure comprising a plurality of second conductive portions overlapped onto the thick central part of gate oxide and interconnected to each other and to the first gate conductive portions by means of a plurality of conducive bridges.
Type:
Grant
Filed:
December 14, 2010
Date of Patent:
April 16, 2013
Assignee:
STMicroelectronics S.r.l.
Inventors:
Angelo Magri, Ferruccio Frisina, Giuseppe Ferla
Abstract: A switched charge storage element integrator in a continuous or discrete time circuit, the integrator including a differential input amplifier, a first 2-terminal charge storage element, a second 2-terminal charge storage element, and a plurality of controlled switches. The differential input amplifier is coupled to a capacitor and a resistor and configured as an inverting integrator. An inverting terminal of the amplifier is coupled to two controlled switches. A non-inverting terminal of the amplifier is coupled to a reference voltage. The first and second switched charge storage element blocks are alternatingly coupled to the inverting terminal INM of the amplifier XOPA during the active state of a second clock signal and a first clock signal, respectively, for making the supply noise continuous and eliminating its dependency on the clock phases, thereby zeroing its convolution with the clock signal.
Abstract: A rectifier building block has four electrodes: source, drain, gate and probe. The main current flows between the source and drain electrodes. The gate voltage controls the conductivity of a narrow channel under a MOS gate and can switch the RBB between OFF and ON states. Used in pairs, the RBB can be configured as a three terminal half-bridge rectifier which exhibits better than ideal diode performance, similar to synchronous rectifiers but without the need for control circuits. N-type and P-type pairs can be configured as a full bridge rectifier. Other combinations are possible to create a variety of devices.
Abstract: A semiconductor device with vertical current flow includes a body having a substrate made of semiconductor material. At least one electrical contact on a first face of the body. A metallization structure is formed on a second face of the body, opposite to the first face. The metallization structure is provided with metal vias, which project from the second face within the substrate so as to form a high-conductivity path in parallel with portions of said substrate.
Type:
Grant
Filed:
January 24, 2012
Date of Patent:
April 16, 2013
Assignee:
STMicroelectronics S.r.l.
Inventors:
Angelo Magri′, Antonio Damaso Maria Marino
Abstract: According to an embodiment, a receiver, system and method for channel estimation in a communications system utilizing multiple transmit antennas are provided. The receiver comprises an antenna node operable to receive a signal that includes a superposition of at least a first signal corresponding to a first sequence and a second signal corresponding to a second sequence; and a channel estimator, coupled to the antenna node, operable to correlate the received signal with at least one of the first and second sequences, to determine at least one boundary between at least two waveforms resulting from the correlation, and to calculate using the boundary and the at least two waveforms a first channel response corresponding to the first signal and a second channel response corresponding the second signal. Channel estimates are determined based on determined boundaries and may be smoothed by a Savitzky-Golay filter in the frequency domain. The variance of additive white Gaussian noise (AWGN) may also be estimated.
Abstract: An embodiment of a power device having a first current-conduction terminal, a second current-conduction terminal, a control terminal receiving, in use, a control voltage of the power device, and a thyristor device and a first insulated-gate switch device coupled in series between the first and the second conduction terminals; the first insulated-gate switch device has a gate terminal coupled to the control terminal, and the thyristor device has a base terminal. The power device is further provided with: a second insulated-gate switch device, coupled between the first current-conduction terminal and the base terminal of the thyristor device, and having a respective gate terminal coupled to the control terminal; and a Zener diode, coupled between the base terminal of the thyristor device and the second current-conduction terminal so as to enable extraction of current from the base terminal in a given operating condition.
Abstract: A system and method for optimal allocation of bandwidth in a multichannel transmission channel. In an embodiment, a system may allocate a specific amount of bandwidth in the transmission channel in order to maximize the value of the data that is transmitted on a per-channel basis. Typically, a transmission channel has enough bandwidth to accommodate the minimum bandwidth for all data across all channels. The excess bandwidth may be allocated in an optimal manner so as to provide additional bandwidth for the most valuable channels. The maximum allocation of bandwidth is a point in which allocating additional bandwidth to a channel does not yield any additional value. Such an allocation may be accomplished using an iterative analysis of the available bandwidth and a microeconomic-based analysis of the subjective value of each channel.
Abstract: The disclosure concerns a method of simulating the image projected by a mask during photolithography including determining by a processor (702), taking into account the thickness of a masking layer of a mask, a near-field transmission amplitude curve of light passing through the mask across at least one pattern boundary in the initial mask layout; calculating by the processor, for each of a plurality of zones, average values of the curve; and simulating by a simulator (708) the image projected by the initial mask layout during the photolithography based on the average values.
Abstract: A wafer level packaged integrated circuit includes an array of contacts, a silicon layer and a glass layer. The silicon and glass layers are bonded together to form a bonding material layer therebetween. The bonding material layer includes gaps between the silicon layer and the glass layer at areas where no bonding material is present. An array of contacts is adjacent the semiconductor layer on a side thereof opposite the bonding layer. The wafer level packaged integrated circuit is provided with additional bonding material layer portions within the gaps and aligned with at least some of the contacts. When the wafer level packaged integrated circuit is configured as an image sensor or display having a pixel array, the additional bonding material layer portions are not used in an area of the pixel array.
Type:
Grant
Filed:
September 10, 2009
Date of Patent:
April 16, 2013
Assignee:
STMicroelectronics ( Research & Development) Limited