Abstract: An optical mouse includes an image sensor for providing image data via an analog-to-digital converter to a correlation circuit and a motion estimation circuit to provide output signals representative of motion of the mouse. The output signals may be disabled when the mouse is lifted away from the working surface. This may be achieved by high-pass filtering the signals, summing each frame in a summer to provide a single value, and comparing this to a threshold. If the filtered and summed value exceeds the threshold, this may indicate that the image contains in-focus objects, and that the mouse is on the working surface.
Type:
Grant
Filed:
June 30, 2005
Date of Patent:
June 11, 2013
Assignees:
STMicroelectronics Ltd., STMicroelectronics SA
Abstract: A system for providing an assembler for a microprocessor has a file which contains data describing the instruction set of the microprocessor. A translation device for translating into machine language accesses the instruction set descriptors to constrain the machine code output of the assembler to conform to the architecture of the instruction set.
Abstract: A fixed-size data packet switch comprising: 1) N input ports for receiving incoming fixed-size data packets at a first data rate and outputting the fixed-size data packets at the first data rate; 2) N output ports for receiving fixed-size data packets at the first data rate and outputting the fixed-size data packets at the first data rate; and 3) a switch fabric interconnecting the N input ports and the N output ports.
Abstract: Methods and device for in-system firmware update in an information output device are provided. In one aspect, a method of firmware update in a display device receives a set of data in an image format through a video signal input channel of an input port of the display device. The set of data is converted from the image format to an instruction set format that is different from the image format. A first set of instructions that is used to operate the display device is updated with the set of data in the instruction set format.
Abstract: One embodiment discloses a method for soldering a cap for an integrated electronic device to a support layer, including the steps of: providing a support layer; providing a cap including a core of a first material and a coating layer of a second material, the first and second material being respectively wettable and non-wettable with respect to a solder, the coating layer being arranged so as to expose a surface of the core; coupling the cap with the support layer; and soldering the surface of the core to the support layer, by means of the solder.
Abstract: A method for testing a strip of MEMS devices, the MEMS devices including at least a respective die of semiconductor material coupled to an internal surface of a common substrate and covered by a protection material; the method envisages: detecting electrical values generated by the MEMS devices in response to at least a testing stimulus; and, before the step of detecting, at least partially separating contiguous MEMS devices in the strip. The step of separating includes defining a separation trench between the contiguous MEMS devices, the separation trench extending through the whole thickness of the protection material and through a surface portion of the substrate, starting from the internal surface of the substrate.
Abstract: A packaged MEMS device, wherein at least two support structures are stacked on each other and are formed both by a support layer and a wall layer coupled to each other and delimiting a respective chamber. The chamber of the first support structure is upwardly delimited by the support layer of the second support structure. A first and a second dice are accommodated in a respective chamber, carried by the respective support layer of the first support structure. The support layer of the second support structure has a through hole allowing wire connections to directly couple the first and the second dice. A lid substrate, coupled to the second support structure, closes the chamber of the second support structure.
Abstract: An embodiment is a circuit for use with a display device, the circuit including: a first input node configured to be operatively coupled to a first port of a data source device that provides the display device with data, to receive a first direct voltage used for a real-time display of the data on the display device; and at least one output node, configured to operatively provide the display device with at least one output voltage generated based on the first direct voltage, wherein the first port is isolated from a data port used to transmit the data.
Abstract: An enhanced sensitivity radio frequency (RF) front end circuit includes a transformer configured to convert a balanced transmit signal to an unbalanced transmit signal and to convert a second filtered receive signal to a balanced receive signal. A switch in a first state receives the unbalanced transmit signal from the transformer and transfers the unbalanced transmit signal to an amplifier circuit and receives an amplified transmit signal from the amplifier circuit and transfers the amplified transmit signal to a filter. In a second state, the switch receives a first filtered receive signal from the filter and transfers the first filtered receive signal to the amplifier circuit and receives a second filtered receive signal from the amplifier circuit and transfers the second filtered receive signal to the transformer.
Abstract: A WLAN communication system and algorithm that adaptively changes the data transmission rate of a communication channel based on changing channel conditions. The WLAN communication system or algorithm has two modes being a searching mode and a transmission mode. Furthermore, the WLAN communication system or algorithm incorporates an additive increase, multiplicative decrease (AIMD) function into the rate adaptation algorithm.
Abstract: A WLAN communication system and algorithm that adaptively changes the data transmission rate of a communication channel based on changing channel conditions. The WLAN communication system or algorithm has two modes being a searching mode and a transmission mode. Furthermore, the WLAN communication system or algorithm incorporates an additive increase, multiplicative decrease (AIMD) function into the rate adaptation algorithm.
Abstract: The method of processing a first digital image by combining the first digital image with a second digital image includes the first digital image being received from a pixel array, and when receiving the first digital image it is converted into a first continuous sequential data stream. The second digital image may be provided in the form of a second continuous sequential data stream, and the first and second digital images may be combined by continuously combining the data in the first and second data stream.
Abstract: An imaging assembly for an image sensor may include a lens, a transparent substrate and two aspherical optical coatings on each side of the substrate. The imaging assembly can also incorporate an opaque coating with an opening in-line with the lens to form an aperture, an anti-reflection coating, and an infrared filter coating.
Type:
Grant
Filed:
August 11, 2005
Date of Patent:
October 4, 2011
Assignee:
STMicroelectronics Ltd.
Inventors:
Jonathan Ephriam David Hurwitz, Ewan Findlay
Abstract: The pointing device is used in connection with a computer system, and has a sensor for sensing data representing a displacement information in at least two spatial coordinates. The device is capable of toggling between a first and a second mode of operation, and also adjusting the displacement information referring to a first of the two spatial coordinates (i.e. first displacement information) in view of a second of the two spatial coordinates (i.e. second displacement information) when the second mode of operation is activated.
Abstract: An image sensor may have a pixel array and an imaging lens for forming an image on the pixel array. The sensor may also include a pixel readout unit for enabling individual pixel values to be readout. The sensor may further include a pixel selection unit wherein at least one pixel sub-array is selected according to the pixel values readout and the at least one sub-array is used for reading the image.
Abstract: The image sensor includes an array of pixels, each pixel having a photo-diode, for providing a pixel voltage, an analog-to-digital converter (ADC) operable to convert the pixel voltage to a digital value and a memory for storing the digital value. Read circuitry is included for reading out the digital values from the pixels of the array in a predetermined order. The image sensor may be configured such that a counter incorporates the memory, and the counter may be adapted to operate as a shift register. The counters of two or more pixels may be connected to form one or more chains such that digital values can be read out in a bit-serial manner.
Abstract: An image sensor has an array of pixels. Each column has a first and a second column line connected to a read-reset amplifier/comparator which acts in a first mode as a unity gain buffer amplifier to reset the pixels via the first lines, and in a second mode acts as a comparator and AD converter to produce digitized reset and signal values. The reset and signal values are read out a line at a time in interleaved fashion. Reset values are stored in a memory and subsequently subtracted from the corresponding signal values. The arrangement reduces both fixed pattern and kT/C noise.
Abstract: The method of determining a focus measure from an image includes detecting one or more edges in the image by processing the image with one or more first order edge detection kernels adapted to reject edge phasing effects. A first measure of the strength of each of the edges, and the contrast of each of the edges may be determined. The method may include normalizing the first measure of the strength of each of the edges by the contrast of each of the edges to obtain a second measure of the strength of each of the edges, and resealing the second measure of the strength of each of the edges. The method may also include selecting one or more of the edges from the image in accordance with the second measure of their strengths, and calculating the focus measure from the second measure of the strengths of the selected edges.
Abstract: Pins on an RFIC package carry RF signals between the package and a PCB. A first capacitor is coupled between a selected pin of the RFIC package near the pins carrying the RF signals and a radio-frequency ground on the PCB. A coupling between the RFIC package and the PCB is modeled, and includes modeling of the pins of interest and at least one parasitic element of the coupling. A capacitance of the first capacitor is selected based on the modeling to obtain desired performance at selected operational frequencies. A second capacitor may be coupled between the selected pin a radio frequency ground of the RFIC package. An inductor may be coupled in parallel across the first capacitor.
Abstract: An electronic device includes an analog-to-digital converter adapted to receive a radio-frequency signal and adapted to provide therefrom a digital signal, wherein the radio-frequency signal may include an interference signal. The electronic device has a controller adapted to perform a digital measure on the digital signal and adapted to generate therefrom a selection signal having a first value indicating a non-interference condition in the radio-frequency signal and having a second value indicating an interference-condition in the radio-frequency signal. A selector is adapted to transmit the digital signal in case the selection signal has the first value and to transmit a signal replacing the digital signal in case the selection signal has the second value.