Abstract: A MOS transistor, in particular a vertical channel transistor, includes a semiconductor body housing a body region, a source region, a drain electrode and gate electrodes. The gate electrodes extend in corresponding recesses which are symmetrical with respect to an axis of symmetry of the semiconductor body. The transistor also has spacers which are also symmetrical with respect to the axis of symmetry. A source electrode extends in electrical contact with the source region at a surface portion of the semiconductor body surrounded by the spacers and is in particular adjacent to the spacers. During manufacture the spacers are used to form in an auto-aligning way the source electrode which is symmetrical with respect to the axis of symmetry and equidistant from the gate electrodes.
Abstract: The present disclosure is directed to micro-electromechanical system (MEMS) accelerometers that are configured for a user interface mode and a true wireless stereo (TWS) mode of an audio device. The accelerometers are fabricated with specific electromechanical parameters, such as mass, stiffness, active capacitance, and bonding pressure. As a result of the specific electromechanical parameters, the accelerometers have a resonance frequency, quality factor, sensitivity, and Brownian noise density that are suitable for both the user interface mode and the TWS mode.
Type:
Application
Filed:
October 3, 2023
Publication date:
January 25, 2024
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Francesco RIZZINI, Nicolo' MANCA, Cristian DALL'OGLIO
Abstract: A method and apparatus for performing dynamic current scaling of an input current of a voltage regulator are provided. The method and apparatus allow tuning current consumption in various applications, calculating a duration of an activity phase in which various algorithms are executed and activating dynamic current scaling of a regulator if the activity duration is shorter than a programmable threshold. A controller receives a threshold for an activity duration and a window size in which to evaluate the activity duration.
Abstract: The present disclosure is directed to a power package with copper plating terminals. The power package includes at least two terminals coupled to a semiconductor die. An area of a first terminal is greater than an area of a second terminal. The first and second terminals extend to a first and second conductive layers in a backside of the package. A third conductive layer is coupled to a backside surface of the die that is coplanar with the first and second conductive layers. The terminals and conductive layers are copper plating. A first molding compound covers the die and terminals, while a second molding compound fills distances between the die and the extensions of the terminals. The copper plating and the molding compounds enhance the performance of the packaged device in a high-power circuit. In addition, robustness of the package is enhanced compared with conventional packages including wire bonding.
Abstract: A circuit includes a current path and a negative bootstrap circuitry coupled to the current path. The current path is coupled between a floating voltage and a reference ground, and includes a current generator coupled through a resistor to the floating voltage at a first node of the current generator. The current generator is controlled by a pulse signal. The negative bootstrap circuitry includes a pump capacitor coupled to a second node of the current generator and to the reference ground. The pump capacitor is configured to provide a negative voltage at the second node of the current generator based on the pulse signal.
Type:
Grant
Filed:
August 15, 2022
Date of Patent:
January 23, 2024
Assignee:
STMICROELECTRONICS S.r.l.
Inventors:
Fabrizio Bognanni, Giovanni Caggegi, Giuseppe Cantone, Vincenzo Marano, Francesco Pulvirenti
Abstract: Embodiments of an electronic device include an integrated circuit, a reconfigurable stream switch formed in the integrated circuit along with a plurality of convolution accelerators and a decompression unit coupled to the reconfigurable stream switch. The decompression unit decompresses encoded kernel data in real time during operation of convolutional neural network.
Type:
Grant
Filed:
February 22, 2023
Date of Patent:
January 23, 2024
Assignees:
STMICROELECTRONICS S.r.l., STMicroelectronics International N.V.
Inventors:
Giuseppe Desoli, Carmine Cappetta, Thomas Boesch, Surinder Pal Singh, Saumya Suneja
Abstract: A method for manufacturing electronic chips includes forming, on the side of a first face of a semiconductor substrate, in and on which a plurality of integrated circuits has been formed beforehand, metallizations coupling contacts of adjacent integrated circuits to one another. The method further includes forming, on the side of the first face of the substrate, first trenches extending through the first face of the substrate and laterally separating the adjacent integrated circuits. The first trenches extend through the metallizations to form at least a portion of metallizations at each of the adjacent circuits.
Abstract: A control circuit for a driving an electronic switch associated with a switching node of a flyback converter includes a comparison circuit configured to generate a switch-off signal by comparing a current measurement signal with a current measurement threshold signal. A valley detection circuit is configured to generate a trigger in a trigger signal when a valley signal indicates a valley in a voltage at the switching node of the flyback converter, and a blanking circuit is configured to generate a switch-on signal by combining the trigger signal with a timer signal provide by a timer circuit. The timer signal indicates whether a blanking time-interval has elapsed.
Abstract: The integrated sensor has a clock which provides a clock signal having a clock frequency; a digital detector which detects a power grid signal and generates a reference digital signal indicative of the power grid signal and having a sample rate which is a function of the clock frequency; and a timing monitoring stage which receives the reference digital signal and a nominal signal indicative of a nominal timing of the reference digital signal. The timing monitoring stage also compares the reference digital signal with the nominal signal and, in response, provides an error signal indicative of a timing error between the reference digital signal and the nominal signal.
Abstract: The present description concerns a switch based on a phase-change material comprising: a region of the phase-change material; a heating element electrically insulated from the region of the phase-change material; and one or a plurality of pillars extending in the region of the phase-change material, the pillar(s) being made of a material having a thermal conductivity greater than that of the phase-change material.
Type:
Application
Filed:
March 27, 2023
Publication date:
January 18, 2024
Applicants:
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, STMicroelectronics (Crolles 2) SAS, STMICROELECTRONICS SA
Inventors:
Alain FLEURY, Stephane MONFRAY, Philippe CATHELIN, Bruno REIG, Vincent PUYAL
Abstract: A monolithic component includes a field-effect power transistor and at least one first Schottky diode inside and on top of a gallium nitride substrate.
Type:
Application
Filed:
September 29, 2023
Publication date:
January 18, 2024
Applicants:
STMICROELECTRONICS APPLICATION GMBH, STMICROELECTRONICS (TOURS) SAS
Inventors:
Mathieu ROUVIERE, Arnaud YVON, Mohamed SAADNA, Vladimir SCARPA
Abstract: An HEMT includes a semiconductor body, which includes a semiconductor heterostructure, and a conductive gate region. The gate region includes: a contact region, which is made of a first metal material and contacts the semiconductor body to form a Schottky junction; a barrier region, which is made of a second metal material and is set on the contact region; and a top region, which extends on the barrier region and is made of a third metal material, which has a resistivity lower than the resistivity of the first metal material. The HEMT moreover comprises a dielectric region, which includes at least one front dielectric subregion, which extends over the contact region, delimiting a front opening that gives out onto the contact region; and wherein the barrier region extends into the front opening and over at least part of the front dielectric subregion.
Abstract: The present description concerns a switch based on a phase-change material comprising: a region of the phase-change material; a heating element electrically insulated from the region of the phase-change material; and one or a plurality of pillars extending in the region of the phase-change material, the pillar(s) being made of a material having a thermal conductivity greater than that of the phase-change material.
Type:
Application
Filed:
March 17, 2023
Publication date:
January 18, 2024
Applicants:
COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES, STMICROELECTRONICS SA, STMicroelectronics (Crolles 2) SAS
Inventors:
Bruno REIG, Vincent PUYAL, Stephane MONFRAY, Alain FLEURY, Philippe CATHELIN
Abstract: A MEMS device formed by a substrate, having a surface; a MEMS structure arranged on the surface; a first coating region having a first Young's modulus, surrounding the MEMS structure at the top and at the sides and in contact with the surface of the substrate; and a second coating region having a second Young's modulus, surrounding the first coating region at the top and at the sides and in contact with the surface of the substrate. The first Young's modulus is higher than the second Young's modulus.
Type:
Grant
Filed:
March 1, 2022
Date of Patent:
January 16, 2024
Assignee:
STMICROELECTRONICS S.R.L.
Inventors:
Enri Duqi, Marco Del Sarto, Lorenzo Baldo
Abstract: A micro-machined ultrasonic transducer is proposed. The micro-machined ultrasonic transducer includes a membrane element for transmitting/receiving ultrasonic waves, during the transmission/reception of ultrasonic waves the membrane element oscillating, about an equilibrium position, at a respective resonance frequency. The equilibrium position of the membrane element is variable according to a biasing electric signal applied to the membrane element. The micro-machined ultrasonic transducer further comprises a cap structure extending above the membrane element; the cap structure identifies, between it and the membrane element, a cavity whose volume is variable according to the equilibrium position of the membrane element. The cap structure comprises an opening for inputting/outputting the ultrasonic waves into/from the cavity. The cap structure and the membrane element act as tunable Helmholtz resonator, whereby the resonance frequency is variable according to the volume of the cavity.
Abstract: A convolutional accelerator includes a feature line buffer, a kernel buffer, a multiply-accumulate cluster, and iteration control circuitry. The convolutional accelerator, in operation, convolves a kernel with a streaming feature data tensor. The convolving includes decomposing the kernel into a plurality of sub-kernels and iteratively convolving the sub-kernels with respective sub-tensors of the streamed feature data tensor. The iteration control circuitry, in operation, defines respective windows of the streamed feature data tensors, the windows corresponding to the sub-tensors.
Type:
Application
Filed:
July 7, 2022
Publication date:
January 11, 2024
Applicants:
STMICROELECTRONICS S.r.l., STMicroelectronics International N.V.
Inventors:
Antonio DE VITA, Thomas BOESCH, Giuseppe DESOLI
Abstract: A stator for an electric actuator or motor, including: a solid body; a ferromagnetic core region between the layers of semiconductor material, electrically insulated from the layers of semiconductor material; a plurality of conductive through vias through the solid body; a first plurality of conductive strips, which extend parallel to one another above the core; and a second plurality of conductive strips, which extend parallel to one another above the core and opposite to the first plurality of conductive strips; wherein the first plurality of conductive strips, the plurality of conductive through vias, and the second plurality of conductive strips form a winding or coil of the stator.
Abstract: An integrated circuit includes a programmable logic block. The programmable logic block includes a programmable logic array (PLA) and a field programmable gate array (FPGA). The PLA includes logic cells having a first architecture. The FPGA includes logic cells having a second architecture more complex than the first architecture. The programmable logic block includes an interface coupled to the PLA and the FPGA. An integrated circuit may also include circuitry for selecting one of plurality of clock signals for logic cells of a PLA.
Type:
Application
Filed:
July 8, 2022
Publication date:
January 11, 2024
Applicant:
STMICROELECTRONICS (ROUSSET) SAS
Inventors:
Mark WALLIS, Jean-Francois LINK, Joran PANTEL
Abstract: A power MOSFET device includes a semiconductor body having a first main surface. The semiconductor body includes an active area facing the first main surface. The power MOSFET device includes an isolated-gate structure, which extends over the active area and includes a gate-oxide layer, which is made of insulating material and extends over the first main surface, and a gate region buried in the gate-oxide layer so as to be electrically insulated from the semiconductor body. The gate region includes a gate layer of polysilicon and at least one first silicide electrical-modulation region and one second silicide electrical-modulation region, which extend in the gate layer so as to face a top surface of the gate layer and to be arranged alongside one another and spaced apart from one another in a first plane.
Type:
Application
Filed:
June 30, 2023
Publication date:
January 11, 2024
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Mario Giuseppe SAGGIO, Cateno Marco CAMALLERI, Alfio GUARNERA
Abstract: The detection structure for a MEMS accelerometer is formed by a substrate; a first movable mass and a second movable mass which extend at a distance from each other, suspended on the substrate and which are configured to undergo a movement, with respect to the substrate, in response to an acceleration. The detection structure also has a first movable electrode integral with the first movable mass; a second movable electrode integral with the second movable mass; a first fixed electrode integral with the substrate and configured to form, with the first movable electrode, a first variable capacitor; and a second fixed electrode integral with the substrate and configured to form, with the second movable electrode, a second variable capacitor. The detection structure has an insulation region, of electrically insulating material, which is suspended on the substrate and extends between the first movable mass and the second movable mass.
Type:
Application
Filed:
June 13, 2023
Publication date:
January 11, 2024
Applicant:
STMICROELECTRONICS S.r.l.
Inventors:
Gabriele GATTERE, Francesco RIZZINI, Federico VERCESI