Abstract: A charge pump having a supply terminal, for receiving a supply voltage, and an output terminal, for supplying an output voltage. The charge pump has a control block including a comparator having a first comparison input, for receiving the supply voltage, a second comparison input, for receiving the output voltage, and a comparison output, for generating a pump-switch-off signal depending upon a comparison between the input voltage and the output voltage; and a switch controlled in switching off by the pump-switch-off signal and configured for switching off the charge pump circuit. The control block has an activation input for receiving an activation signal that has a plurality of pulses and repeatedly activates the comparator-circuit block.
Abstract: A method and a device for monitoring a digital signal, wherein a first P-channel MOS transistor is placed in degradation conditions of negative bias temperature instability type during periods when the signal to be monitored is in a first state; a first quantity representative of the saturation current of the first transistor is measured when the signal to be monitored switches to a second state; and a detection signal is switched when this first quantity exceeds a threshold.
Abstract: A method of detecting a fault including generating at least one blinded data value based on at least one input value and at least one blinding parameter selected from a plurality of blinding parameters generating a first signature based on said at least one blinded data value; selecting, from a memory storing a plurality of reference signatures, one or more reference signatures and comparing said first signature with said one or more reference signatures in order to detect a fault.
Abstract: A method of detecting a fault attack including generating a first signature of a first group of data values by performing a single commutative non-Boolean arithmetic operation between all the data values of the first group; generating a second set of data values by performing a permutation of the first set of data values; generating a second signature of the second group of data values by performing said single commutative non-Boolean arithmetic operation between all the data values of the second group; and comparing the first and second signatures to detect a fault attack.
Abstract: The invention concerns a method of detecting a fault attack including providing a plurality of blinding values; generating a first set of data elements including a first group of data elements and at least one additional data element generated by performing the exclusive OR between at least one data element in the first group and at least one of the blinding values; generating a second set of data elements corresponding to the exclusive OR between each data element of the first set and a selected one of the plurality of blinding values; generating a first signature by performing a commutative operation between each of the data elements of the first set; generating a second signature by performing the commutative operation between each of the data elements of the second set; and comparing the first and second signatures to detect a fault attack.
Abstract: A non-volatile memory including at least first and second memory cells each including a storage MOS transistor with dual gates and an insulation layer provided between the two gates. The insulation layer of the storage transistor of the second memory cell includes at least one portion that is less insulating than the insulation layer of the storage transistor of the first memory cell.
Abstract: The component comprises a first memory (MM) comprising a first portion (P1) having a content modified with a first modification entity (K1) and a second portion (P2) having a content modified with a second entity (K2), a storage means (MS) configured to store the first entity (K1) secretly, a non-volatile memory (NVM) storing an item of entity information representative of the second entity (K2) in a location (END) designated by a first indication (INDK2) contained in the said first portion of the first memory.
Abstract: A method for protecting a key used, by an electronic circuit, in a symmetrical algorithm for ciphering or deciphering a message, including the steps of complementing to one the key and the message; executing the algorithm twice, respectively with the key and the message and with the key and the message complemented to one, the selection between that of the executions which processes the key and the message and that which processes the key and the message complemented to one being random; and checking the consistency between the two executions.
Abstract: The memory device includes a memory cell unit of the electrically erasable and programmable non-volatile type including two memory cells respectively connected to two bit lines via two bit line select transistors. The common terminal between the bit line select transistor and the floating-gate transistor of each memory cell of the memory cell unit is connected to the control gate of the floating-gate transistor of the other memory cell of the memory cell unit.
Abstract: A method for manufacturing and for testing an integrated circuit, including the steps of forming, on the upper portion of the integrated circuit, a passivation layer including openings at the level of metal tracks of the last interconnect stack of the integrated circuit; forming, in the openings, first pads connected to second pads formed on the passivation layer by conductive track sections, the first pads being intended for the connection of the integrated circuit; testing the integrated circuit by bringing test tips in contact with the second pads; and eliminating at least a portion of at least one of the conductive track sections.
Abstract: The disclosure relates to a device for supplying to at least one integrated circuit a high voltage for erasing and/or programming of a memory. The device includes at least one contact terminal linked to at least one contact terminal of the integrated circuit, a monitor for monitoring a data signal received by the integrated circuit and detecting in the data signal a write command of the memory, and a voltage supplier for applying the high voltage to a terminal of the integrated circuit when a write command of the memory has been detected by the monitor.
Abstract: The disclosure relates to a sense amplifier comprising a cascode transistor and means for biasing the cascode transistor, supplying a control voltage to a gate terminal of the cascode transistor. The means for biasing the cascode transistor comprise means for isolating the gate terminal of the cascode transistor from the output of the voltage generator during a first period of the precharge phase, so as to boost the bitline voltage, then for linking the gate terminal to the output of the voltage generator during a second period of the precharge phase. Application in particular to sense amplifiers for non-volatile memories.
Abstract: The secure method for cryptographic computation comprises processing of an input datum (D) by a cryptographic computation tool involving at least one encryption key (K) and at least one generated item of secret information, so as to provide an output datum (DC). The generation of the said at least one item of secret information (ST) comprises processing of the said input datum by at least one operator (OPS) having at least one secret characteristic.
Abstract: The disclosure relates to an integrated circuit electrically powered by a supply voltage and comprising a memory electrically erasable and/or programmable by means of a second voltage greater than the supply voltage. The integrated circuit comprises means for receiving the second voltage by the intermediary of a reception terminal of the supply voltage or by the intermediary of a reception or emission terminal of a data or clock signal. Applicable in particular to electronic tags comprising a reduced number of interconnection terminals.
Abstract: The memory device comprises a physical memory plane (PMP) comprising m first physical lines (RGP1i) extending along a first direction and n second physical lines (RGP2j) extending along a second direction, reception means for receiving a logical address (ADR) designating a first logical line (RG1i) and a second logical line (RG2j) of a matrix logical memory plane (PML), possessing 2p first logical lines extending along the first direction and 2q second logical lines extending along the second direction, in that m and n are each different from a power of two, m being a multiple of 2k, k being less than or equal to p, and the product of m and n being equal to the nearest integer above 2p+q, and in that it comprises means for addressing the physical memory plane (PMP) that are configured to address a first physical line and a part only of a second physical line on the basis of the content of the said logical address received and of the remainder of a Euclidean division of a part of the content of this logical ad
Abstract: A device for detecting temperature variations of the substrate of an integrated circuit chip, including, in the substrate, implanted resistors connected as a Wheatstone bridge, wherein each of two first opposite resistors of the bridge is covered with an array of metal lines parallel to a first direction, the first direction being such that a variation in the substrate stress along this direction causes a variation of the unbalance value of the bridge.
Abstract: A method for protecting, against laser attacks, an integrated circuit chip formed inside and on top of a semiconductor substrate and including in the upper portion of the substrate an active portion in which are formed components, this method including the steps of: forming in the substrate a gettering area extending under the active portion, the upper limit of the area being at a depth ranging between 5 and 50 ?m from the upper surface of the substrate; and introducing diffusing metal impurities into the substrate.
Abstract: An integrated circuit chip formed inside and on top of a semiconductor substrate and including: in the upper portion of the substrate, an active portion in which components are formed; and under the active portion and at a depth ranging between 5 and 50 ?m from the upper surface of the substrate, an area comprising sites for gettering metal impurities and containing metal atoms at a concentration ranging between 1017 and 1018 atoms/cm3.
Abstract: A method for writing and reading data in memory cells, comprising, when writing a data in a block of a first memory zone, a step consisting of writing in a second memory zone a temporary information structure metadata comprising a start flag, an identifier of the temporary information structure, an information about the location of the block in the first memory zone, and a final flag, and, after a power on of the first memory zone, searching for an anomaly in temporary information structures present in the second memory zone.
Abstract: A method for writing and reading data in memory cells, comprises the steps of: defining a virtual memory, defining write commands and read commands of data (DT) in the virtual memory, providing a first nonvolatile physical memory zone (A1), providing a second nonvolatile physical memory zone (A2), and, in response to a write command of an initial data, searching for a first erased location in the first memory zone, writing the initial data (DT1a) in the first location (PB1(DPP0)), and writing, in the metadata (DSC0) an information (DS(PB1)) allowing the first location to be found and an information (LPA, DS(PB1)) forming a link between the first location and the location of the data in the virtual memory.