Abstract: An additive manufacturing process for building a three-dimensional part, which includes applying a layer of one or more powder-based metals onto or over a substrate, selectively melting and/or sintering the powder-based metals to produce a layer of the three-dimensional part, and repeating these steps such that the built three-dimensional part includes one or more self-supporting internal passageways, and which preferably precludes the need for internal support structures for the internal passageways.
Type:
Grant
Filed:
March 12, 2015
Date of Patent:
October 2, 2018
Assignee:
Stratasys, Inc.
Inventors:
William Cody DuBose, Frederick Carl Claus, Andrew Carter, Bryan Joshua Lee Bedal
Abstract: A support material for use in an additive manufacturing system to print a support structure for a three-dimensional part. The support material includes a base resin that is substantially miscible with a part material used to print the three-dimensional part, and has a glass transition temperature within about 10° C. of a glass transition temperature of the part material. The support material also includes a dispersed resin that is substantially immiscible with the base resin, where the base resin and the dispersed resin are each thermally stable for use in the additive manufacturing system in coordination with the part material.
Abstract: A method for printing a three-dimensional part in an additive manufacturing process, which includes calculating surface plane angles relative to one or more of the coordinate axes as a function of surface area of the surface geometry, calculating a build score for each coordinate axis as a function of the calculated surface plane angles, and selecting an orientation for the digital model in the coordinate system based at least in part on the calculated build scores. The build scores preferably predict which part orientations are likely to provide good surface quality for the printed three-dimensional part.
Type:
Grant
Filed:
February 26, 2015
Date of Patent:
August 14, 2018
Assignee:
Stratasys, Inc.
Inventors:
Jacob David Lynch August, William J. Swanson, Kevin Johnson
Abstract: An additive manufacturing system for printing three-dimensional parts, the system comprising a heatable chamber with a port, a print foundation, a print head configured to print a three-dimensional part onto the print foundation in a layer-by-layer manner along a printing axis, and a drive mechanism configured to index the print foundation along the printing axis such that, while the print head prints the three-dimensional part, the print foundation and at least a portion of the three-dimensional part pass through the port and out of the heated chamber.
Type:
Grant
Filed:
October 26, 2015
Date of Patent:
July 31, 2018
Assignee:
Stratasys, Inc.
Inventors:
S. Scott Crump, Dominic F. Mannella, William J. Swanson, Kevin C. Johnson, Ronald G. Schloesser
Abstract: A nozzle for printing three-dimensional parts with an additive manufacturing system, the nozzle comprising a nozzle body having an inlet end and a tip end offset longitudinally from the inlet end, a tip pipe for extruding a flowable material, an inner ring extending circumferentially around the tip pipe at the outlet end, an outer ring extending circumferentially around the inner ring, at least one annular recessed groove located circumferentially between the inner ring and the outer ring.
Type:
Grant
Filed:
August 16, 2012
Date of Patent:
July 24, 2018
Assignee:
Stratasys, Inc.
Inventors:
William J. Swanson, Dominic F. Mannella, Kevin C. Johnson, Ronald G. Schloesser
Abstract: A feedstock material for use as a support material in an additive manufacturing system includes a pre-ceramic material in powder form. The preceramic material comprises calcium carbonate, sodium carbonate, sodium aluminate or combinations thereof. The feedstock material includes a thermoplastic binder having the pre-ceramic material dispersed therein, wherein the pre-ceramic material and the thermoplastic binder are in a filament form. The filament is configured to be melted and extruded to form a support structure for a ceramifable article in a layer by layer manner, wherein the pre-ceramic material is at least about 50% of the feedstock material.
Abstract: A polymeric material includes a semi-crystalline polymer and a secondary material wherein when the secondary material is combined with the semi-crystalline polymer to form a blend having an enthalpy that is between about 2 J/g heat of fusion and about 80% of the heat of fusion of the neat semi-crystalline material, as measured by differential scanning calorimetry (DSC) when cooling from a melting temperature to a hot crystalline temperature at a rate of 10° C./min.
Abstract: A support structure removal system comprising a vessel and a second component. The vessel comprises a vessel body, a porous floor configured to retain a three-dimensional part, and an impeller rotatably mounted below the porous floor. The second component comprises a surface configured to operably receive the vessel, and a rotation-inducing assembly located below the surface, where the rotation-inducing assembly is configured to rotate the impeller with magnetic fields when the vessel is received on the surface of the second component to agitate and direct flows of an aqueous fluid through the porous floor.
Type:
Grant
Filed:
February 23, 2016
Date of Patent:
July 10, 2018
Assignee:
Stratasys, Inc.
Inventors:
William J. Swanson, Dominic F. Mannella, Ronald G. Schloesser
Abstract: A consumable filament for use in an extrusion-based additive manufacturing system, where the consumable filament comprises a core portion of a matrix of a first base polymer and particles dispersed within the matrix, and a shell portion comprising a same or a different base polymer. The consumable filament is configured to be melted and extruded to form roads of a plurality of solidified layers of a three-dimensional part, and where the roads at least partially retain cross-sectional profiles corresponding to the core portion and the shell portion of the consumable filament and retain the particles within the roads of the printed part and do not penetrate the outer surface of the shell portion.
Type:
Grant
Filed:
March 21, 2016
Date of Patent:
July 3, 2018
Assignee:
Stratasys, Inc.
Inventors:
Christopher Scott Graley, Christine Lawrence Sumerel, James E. Orrock
Abstract: A part material for printing three-dimensional parts with an electrophotography-based additive manufacturing system, the part material including a composition having a copolymer (including acrylonitrile units, butadiene units, and aromatic units), a charge control agent, and a heat absorber. The part material is provided in a powder form having a controlled particle size, and is configured for use in the electrophotography-based additive manufacturing system having a layer transfusion assembly for printing the three-dimensional parts in a layer-by-layer manner.
Abstract: A method and program for printing a three-dimensional part with an additive manufacturing system, the method including generating or otherwise providing strain data from a digital model of the three-dimensional part, orienting the digital model to align the directions of high tensile strain in a build plane, and printing the three-dimensional part in a layer-by-layer manner based on the oriented digital model with the additive manufacturing system.
Abstract: A method for printing a three-dimensional part with an additive manufacturing system includes providing a consumable feedstock material comprising a semi-crystalline polymer containing one or more secondary materials, wherein the consumable feedstock material has a process window in which crystalline kinetics are either accelerated or retarded. The consumable feedstock material is melted in the additive manufacturing system. At least a portion of the three-dimensional part from the melted consumable feedstock material in a build environment maintained within the process window.
Abstract: In a method for printing a three-dimensional (3D) parts with an additive manufacturing system, a developed layer of an electrically charged powder material is produced on a transfer medium using an electrophotographic (EP) engine. The transfer medium and the developed layer are fed in a feed direction. A position of the developed layer on the transfer medium is detected using a first sensor having a first output that indicates the position. A position of a moveable build platform is adjusted relative to the transfer medium to reduce one or more overlay errors between the developed layer and an intermediate build surface of a three-dimensional structure retained on the moveable build platform based on the first output. The developed layer is transferred to the intermediate build surface using a pressing element.
Abstract: An additive manufacturing system comprising a transfer medium configured to receive the layers from a imaging engine, a heater configured to heat the layers on the transfer medium, and a layer transfusion assembly that includes a build platform, and is configured to transfuse the heated layers onto the build platform in a layer-by-layer manner to print a three-dimensional part.
Type:
Grant
Filed:
September 21, 2012
Date of Patent:
February 27, 2018
Assignee:
Stratasys, Inc.
Inventors:
Steven A. Chillscyzn, James W. Comb, William J. Hanson, J. Randolph Sanders, Michael W. Bacus
Abstract: A payout tube for enabling payout of a consumable filament from a consumable assembly that is configured for use with an additive manufacturing system, the payout tube comprising a tip end having an inlet opening, a base end having an outlet opening, and a tube body having an average effective outer diameter that is substantially greater than an effective inner diameter of the inlet opening.
Type:
Grant
Filed:
February 19, 2015
Date of Patent:
February 27, 2018
Assignee:
Stratasys, Inc.
Inventors:
Dominic F. Mannella, William J. Swanson, Kevin C. Johnson, J. Samuel Batchelder
Abstract: A linear motor includes a rotor rotatable relative to a surrounding rotor sleeve and about a central axis. At least one opening extends between an inner surface and an outer surface of the rotor. An externally threaded leadscrew extends through the rotor and along the central axis. An internally threaded nut is located within and mated to the rotor so as to rotate with the rotor about the central axis and ride along the leadscrew. A first cavity is located between the nut and a first bushing set against the inner surface of the rotor and a second cavity is located between nut and a second bushing set against the inner surface of the rotor. The at least one opening in the rotor forms a passage between the first and second cavities and is defined between the sleeve and nut so as to communicate excess lubricant.
Abstract: An additive manufacturing system comprising a transfer medium configured to receive the layers from a imaging engine, a heater configured to heat the layers on the transfer medium, and a layer transfusion assembly that includes a build platform, and is configured to transfuse the heated layers onto the build platform in a layer-by-layer manner to print a three-dimensional part.
Type:
Grant
Filed:
September 21, 2012
Date of Patent:
February 6, 2018
Assignee:
Stratasys, Inc.
Inventors:
Steven A. Chillscyzn, James W. Comb, William J. Hanson, J. Randolph Sanders, Michael W. Bacus
Abstract: A method and system for printing a three-dimensional part, which includes producing a developed layer of a part material with one or more electrophotography engines of an additive manufacturing system, transferring the developed layer from the one or more electrophotography engines to a transfer assembly of the additive manufacturing system sintering the developed layer at the transfer assembly to produce a sintered contiguous film, cooling the sintered contiguous film down to a transfer temperature, and pressing the cooled sintered contiguous film into contact with an intermediate build surface of the three-dimensional part with a low applied pressure.