Patents Assigned to Stratasys, Inc.
  • Patent number: 11161336
    Abstract: An apparatus and a method using the apparatus provides heated air in an additive manufacturing process for building a three-dimensional part. The method comprises providing a stream of flowable part material at an initial build level, the initial build level being positioned in and defining a horizontal plane wherein the stream of flowable material is being initially disposed on previously deposited part material. Heated air is provided at a selected temperature corresponding to the temperature of the stream of flowable part material such that the stream of flowable part material deposits on previously deposited part material in an adhering fashion thereby forming the three-dimensional part wherein the heated air is provided in the horizontal plane of the initial build level.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: November 2, 2021
    Assignee: Stratasys, Inc.
    Inventors: Peter D. Schuller, Jordan Paul Nadeau, Joel Ordell Ostby, Shawn Michael Koop
  • Patent number: 11148374
    Abstract: A method for printing a three-dimensional part with an additive manufacturing system, which includes providing a part material that compositionally has one or more semi-crystalline polymers and one or more secondary materials that are configured to retard crystallization of the one or more semi-crystalline polymers, where the one or more secondary materials are substantially miscible with the one or more semi-crystalline polymers. The method also includes melting the part material in the additive manufacturing system, forming at least a portion of a layer of the three-dimensional part from the melted part material in a build environment, and maintaining the build environment at an annealing temperature that is between a glass transition temperature of the part material and a cold crystallization temperature of the part material.
    Type: Grant
    Filed: December 12, 2018
    Date of Patent: October 19, 2021
    Assignee: Stratasys, Inc.
    Inventors: Luke M. B. Rodgers, Vittorio L. Jaker
  • Patent number: 11148362
    Abstract: A rotary additive manufacturing system for producing 3D parts in a layer-wise manner includes a silo support, a tool support, a plurality of silos, and a part developer. The tool support overlays a first side of the silo support, and is configured to rotate about a central axis relative to the silo support. The silos are each attached to the silo support and extend along the central axis from a second side of the silo support that is opposite the first side. The part developer is supported by the tool support, and is configured to build a 3D part within each of the silos in a layer-by-layer manner during rotation of the tool support relative to the silo support.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: October 19, 2021
    Assignee: Stratasys, Inc.
    Inventors: Sydney Crump, S. Scott Crump
  • Patent number: 11123919
    Abstract: A layer-by layer method for additive manufacturing that includes: photocuring a first volume of resin to form a layer of a build at an upper surface of a separation membrane laminated over a build window; injecting a fluid into an interstitial region between the separation membrane and the build window; retracting the build from the build window; evacuating the fluid from the interstitial region; and photocuring a second volume of liquid resin to form a subsequent layer of the build between an upper surface of a separation membrane and the previous layer of the build.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: September 21, 2021
    Assignee: Stratasys, Inc.
    Inventors: Christopher Prucha, Joel Ong
  • Patent number: 11123918
    Abstract: A layer-by layer method for additive manufacturing that includes: photocuring a first volume of resin to form a layer of a build at an upper surface of a separation membrane laminated over a build window; injecting a fluid into an interstitial region between the separation membrane and the build window; retracting the build from the build window; evacuating the fluid from the interstitial region; and photocuring a second volume of liquid resin to form a subsequent layer of the build between an upper surface of a separation membrane and the previous layer of the build.
    Type: Grant
    Filed: June 12, 2020
    Date of Patent: September 21, 2021
    Assignee: Stratasys, Inc.
    Inventors: Christopher Prucha, Joel Ong
  • Patent number: 11124961
    Abstract: A large-scale additive manufacturing system for printing a structure includes an extrusion system and a knitting system. The extrusion system includes a nozzle configured to receive a supply of structural material and to selectively dispense the structural material in flowable form, and a first gantry configured to move the nozzle along toolpaths defined according to a structure to be printed such that structural material may be dispensed along the toolpaths to print a series of structural layers, wherein the series of structural layers bond together to form all or a portion of the structure.
    Type: Grant
    Filed: November 13, 2018
    Date of Patent: September 21, 2021
    Assignee: Stratasys, Inc.
    Inventors: S. Scott Crump, J. Samuel Batchelder, Susan M Hayes Jacobson
  • Patent number: 11110662
    Abstract: A method of printing a hollow part with a robotic additive manufacturing system includes extruding thermoplastic material onto a build platform movable in at least two degrees of freedom in a helical pattern along a continuous 3D tool path with an extruder mounted on a robotic arm, to thereby print a hollow member having a length and a diameter. The method includes orienting the hollow member during printing by moving the build platform based on a geometry of the hollow member wherein the movement of the build platform and the movement of the robotic arm are synchronized to print the part without support structures.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: September 7, 2021
    Assignee: Stratasys, Inc.
    Inventor: Clint Newell
  • Patent number: 11104058
    Abstract: An additive manufacturing system configured to a 3D print using a metal wire material includes a drive mechanism configured to feed the metal feedstock into an inlet tube and a liquefier. The liquefier has a chamber configured to accept the metal feedstock from the inlet tube. The metal feed stock is heated in the chamber such that a melt pool is formed in the chamber. The liquefier has an extrusion tube in fluid communication with the chamber, the extrusion tube having a length (L) and a diameter (D) wherein the ratio of length to diameter (L/D) ranges from about 4:1 to about 20:1. The system has a platen with a surface configured to accept melted material from the liquefier, wherein the platen and the liquefier move in at least three dimensions relative to each other.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: August 31, 2021
    Assignee: Stratasys, Inc.
    Inventors: Robert L. Zinniel, S. Scott Crump, Dominic F. Mannella
  • Patent number: 11104075
    Abstract: An additive manufacturing system including a base assembly and a tray assembly. The base assembly includes a build window, substantially transparent to electromagnetic radiation; a projection system configured to project electromagnetic radiation toward an upper surface of the build window; and a tray seat arranged around a perimeter of the build window. The tray assembly is configured to engage with the base assembly in an engaged configuration and includes: a tray structure defining a registration feature configured to engage the tray seat to locate an aperture proximal to the upper surface of the build window in the engaged configuration; and a separation membrane that is configured to laminate across the upper surface of the build window in response to an evacuation of gas from an interstitial region and configured to separate from the build window in response to injection of gas into the interstitial region.
    Type: Grant
    Filed: November 1, 2019
    Date of Patent: August 31, 2021
    Assignee: Stratasys, Inc.
    Inventors: Christopher Prucha, Joel Ong
  • Patent number: 11104041
    Abstract: A consumable material configured for use in an additive manufacturing system includes a polymeric matrix having polyetherersulfone (PES) in a range of between about 30 wt % and about 85 wt % of the polymeric matrix and polyphenylene sulfide (PPS) in a range between about 15 wt % and about 70 wt % of the polymeric matrix, wherein the polymeric matrix is in a media form suitable for processing in the additive manufacturing system and having a Tg that is about 190° C. or greater and a coefficient of thermal expansion of less than about 30 ?m/(m·° C.). The consumable material is suitable for use in 3D printing of composite mold tools.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: August 31, 2021
    Assignee: Stratasys, Inc.
    Inventors: Vittorio L. Jaker, Brandon Cernohous
  • Patent number: 11097474
    Abstract: A liquefier assembly for use in an extrusion-based additive manufacturing system includes a liquefier tube compositionally comprising a metallic material, and having a first end and a second end offset along a longitudinal axis, and a flow channel extending from the first end to the second end. The assembly further includes an extrusion tip compositionally comprising a metallic material and coupled to the second end of the liquefier tube, the extrusion tip having a cavity having an interior shoulder wherein the cavity terminates in an opening. The liquefier includes a hardened insert compositionally comprising a material that is harder than the metallic material of the extrusion tip and the metallic material of the liquefier tube. The hardened insert has an exterior shoulder that engages the interior shoulder of the extrusion tip such that the insert is press fit within the extrusion tip.
    Type: Grant
    Filed: September 10, 2018
    Date of Patent: August 24, 2021
    Assignee: Stratasys, Inc.
    Inventors: Bryan Migliori, Shawn Michael Koop, James Flannigan
  • Patent number: 11046014
    Abstract: A support material for use in an additive manufacturing system to print a support structure for a three-dimensional part. The support material includes a base resin that is substantially miscible with a part material used to print the three-dimensional part, and has a glass transition temperature within about 10° C. of a glass transition temperature of the part material. The support material also includes a dispersed resin that is substantially immiscible with the base resin, where the base resin and the dispersed resin are each thermally stable for use in the additive manufacturing system in coordination with the part material.
    Type: Grant
    Filed: August 22, 2018
    Date of Patent: June 29, 2021
    Assignee: Stratasys, Inc.
    Inventors: Vittorio L. Jaker, Luke M. B. Rodgers
  • Patent number: 11045997
    Abstract: A support material for use in an additive manufacturing system includes a copolymer of vinyl pyrrolidone (VP) monomers and elastomeric monomers. The elastomeric monomers and the VP monomers are covalently bonded and copolymerized. The support material is thermally stable even at temperatures above 80° C. and is disintegrable in aqueous solutions such as tap water.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: June 29, 2021
    Assignee: Stratasys, Inc.
    Inventors: Adam R. Pawloski, Theresa Sherar
  • Patent number: 11020899
    Abstract: An additive manufacturing system for printing three-dimensional (3D) parts includes a print foundation, a print head, a drive mechanism, and a supporting surface that creates an air bearing for parts under construction as they move through the system. The print head is configured to print a 3D part onto the print foundation in a layer-by-layer manner in a vertical print plane. The drive mechanism is configured to index the print foundation substantially along a horizontal print axis during printing of the 3D part. The support surface is provided by a table extending along the horizontal axis. The table has a plurality of air jets forming an air platen, which generates the air bearing for supporting the 3D part as it is incremented along the print axis.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: June 1, 2021
    Assignee: Stratasys, Inc.
    Inventors: Alfredo Santiago, Jr., Joseph LaBossiere, Kevin Johnson, William J. Swanson
  • Patent number: 10982043
    Abstract: A method of recycling and reusing a tap water-soluble sulfonated polymer material from a structural component made using an additive manufacturing process comprises dissolving the structural component in water to disperse the sulfonated polymer material into the water. The sulfonated polymer material is precipitated from the water and recovered; then dried and reformed into a form suitable for subsequent use as a consumable feedstock in a subsequent additive manufacturing process.
    Type: Grant
    Filed: October 10, 2017
    Date of Patent: April 20, 2021
    Assignee: Stratasys, Inc.
    Inventor: William R. Priedeman, Jr.
  • Patent number: 10953595
    Abstract: A polymeric blend includes a blend of polyvinylpyrrolidone (PVP) polymers. The polymeric material includes a blend of at least two PVP polymers wherein at least one of the PVP polymers has an average molecular weight of about 40,000 daltons or greater. The support material can be thermally stable at temperatures above 80° C. The support material is disintegrable in aqueous solutions such as tap water.
    Type: Grant
    Filed: December 20, 2016
    Date of Patent: March 23, 2021
    Assignee: Stratasys, Inc.
    Inventors: Benjamin A. Demuth, Adam R. Pawloski
  • Patent number: 10926529
    Abstract: Disclosed are three-dimensional parts, such as orthotics and prosthetics, having sinusoidal wave pattern infill structures first and second boundary walls. Also disclosed are printers or systems configured to manufacture such parts, as well as methods of manufacturing such parts. The sinusoidal wave pattern infill structures are formed between, and normal to, the first and second boundary walls and are configured to provide locally tunable structural properties in different regions of the part.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: February 23, 2021
    Assignees: The Regents of the University of Michigan, Stratasys, Inc.
    Inventors: Robert Chisena, Miguel Angel Funes Lora, Albert Shih, Darren Bolger, Jeffrey Wensman, Andrew Hanson, Gary Larson, Chris Holshouser
  • Patent number: 10889068
    Abstract: A 3D printer is configured to print a 3D part. The 3D printer includes a print head carried by a head gantry and configured to operably move the print head along planar tool paths. The 3D printer includes at least one head gantry actuator coupled to the head gantry and configured to move the print head in a plane and a print head actuator coupled to the print head and configured to move the print head in a direction substantially orthogonal to the plane. A sensor is fixedly mounted to the print head and configured to output a first signal that is directly or indirectly related to an acceleration of the print head, and a gyroscope is fixedly mounted to the print head and configured to output a second signal related to a rotational position of the print head.
    Type: Grant
    Filed: October 6, 2016
    Date of Patent: January 12, 2021
    Assignee: Stratasys, Inc.
    Inventors: J. Samuel Batchelder, William J. Swanson
  • Patent number: 10888908
    Abstract: A magnetically throttled liquefier assembly for use in an additive manufacturing system and configured to heat a metal-based alloy to an extrudable state includes an array of magnets to generate a magnetic field in order to induce a viscosity in the heated metal-based alloy and to control the flow rate of the heated metal-based alloy through the liquefier for extrusion and the building of a three-dimensional object with the metal-based alloy.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: January 12, 2021
    Assignee: Stratasys, Inc.
    Inventors: J. Samuel Batchelder, Robert L. Zinniel
  • Patent number: 10889044
    Abstract: A method of producing a part printed in a layer-wise manner includes providing a pre-fabricated starter piece with a first course of loops and printing a layer of a part by extruding one or more flowable thermoplastic materials about the existing course of loops such that an upper surface of the layer is at a selected height on the existing course of loops. The method includes knitting a next course of loops to the existing course of loops to form a portion of an internal woven reinforcement network, and printing a next layer of the part by extruding one or more flowable thermoplastic materials about the next course of loops such that an upper surface of the next layer is at a selected height on the next course of loops, wherein the next course of loops extends above the structure being printed and may function as an existing course of loops for subsequent knitting steps.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: January 12, 2021
    Assignee: Stratasys, Inc.
    Inventors: J. Samuel Batchelder, S. Scott Crump