Patents Assigned to Sumitomo Electric Toyama Co., Ltd.
  • Publication number: 20210040638
    Abstract: A method for producing a metal porous body includes the steps of: performing electrical conduction treatment on a surface of a skeleton of a sheet-like resin porous body having the skeleton with a three-dimensional network structure, to obtain a conductive resin porous body having a conductive layer; performing electroplating treatment on a surface of a skeleton of the conductive resin porous body to obtain a plated resin porous body having a metal plating layer; and performing treatment of removing at least the resin porous body from the plated resin porous body to obtain a metal porous body. In the electroplating treatment, power is supplied to a rotation shaft of a rotating electrode roller while a contact surface of a power supply brush composed of a sintered body is brought into sliding contact with the rotation shaft, with a lubricant, not containing conductive metal powder, interposed therebetween.
    Type: Application
    Filed: August 10, 2018
    Publication date: February 11, 2021
    Applicant: SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Hitoshi TSUCHIDA, Ryuuichi YOSHIKAWA
  • Publication number: 20210025068
    Abstract: A method for producing a metal porous body includes the steps of: performing electrical conduction treatment on a surface of a skeleton of a sheet-like resin porous body having the skeleton with a three-dimensional network structure, to obtain a conductive resin porous body having a conductive layer; performing electroplating treatment on a surface of a skeleton of the conductive resin porous body to obtain a plated resin porous body having a metal plating layer; and performing treatment of removing at least the resin porous body from the plated resin porous body to obtain a metal porous body. In the electroplating treatment, power was supplied to a rotation shaft of a rotating electrode roller by bringing a power supply brush formed by a material containing carbon as a main component into sliding contact with the rotation shaft.
    Type: Application
    Filed: August 10, 2018
    Publication date: January 28, 2021
    Applicant: SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Hitoshi TSUCHIDA, Ryuuichi YOSHIKAWA, Hiroshi OOI
  • Publication number: 20200373585
    Abstract: A metal porous body is a metal porous body mainly composed of nickel and having a framework of a three-dimensional network structure, Ni(OH)2 being present in a surface of the framework, when the metal porous body is subjected to at least 30 potential scans between a lower limit potential of ?0.10 V and an upper limit potential of +0.65 V with respect to a hydrogen standard potential in not less than 10% by mass and not more than 35% by mass of a potassium hydroxide aqueous solution, at least oxygen being detected within a depth of 5 nm from the surface, and hydrogen being detected at least in the surface.
    Type: Application
    Filed: July 11, 2018
    Publication date: November 26, 2020
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD., PRIMEARTH EV ENERGY CO., LTD.
    Inventors: Kazuki OKUNO, Masatoshi MAJIMA, Hitoshi TSUCHIDA, Junichi NISHIMURA, Koutarou KIMURA, Yusuke SHIMIZU
  • Publication number: 20200280073
    Abstract: A metal porous body including a frame of a three-dimensional network structure, wherein the metal porous body has an outer appearance of a sheet shape, the frame is an alloy containing at least nickel and chromium, and is dissolved with iron in solid state, and the number of aluminum oxide powder adhered to the surface of the frame is 10 or less in 1 cm2 of the apparent area of the metal porous body.
    Type: Application
    Filed: June 5, 2019
    Publication date: September 3, 2020
    Applicant: SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Hitoshi TSUCHIDA, Junichi NISHIMURA, Seiji MABUCHI
  • Publication number: 20200274170
    Abstract: A metal porous body having a connection portion where end portions in a longitudinal direction X of at least two long sheet-shaped metal porous materials are connected in a manner overlapping with each other, each of the metal porous materials having a frame with a three-dimensional network structure, the metal porous body having a recess with a thickness thinner than a thickness of each of the metal porous materials, in the connection portion, the frames of the at least two metal porous materials being entangled with each other, in the recess.
    Type: Application
    Filed: July 2, 2019
    Publication date: August 27, 2020
    Applicant: SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Hitoshi TSUCHIDA, Toshitaka NAKAGAWA, Junichi NISHIMURA
  • Publication number: 20190259508
    Abstract: A connector terminal wire contains 0.1% by mass or more and 1.5% by mass or less of Fe, 0.02% by mass or more and 0.7% by mass or less of P, and 0% by mass or more and 0.7% by mass or less, in total, of at least one of Sn and Mg, with the balance being Cu and impurities.
    Type: Application
    Filed: September 12, 2017
    Publication date: August 22, 2019
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Akiko Inoue, Kei Sakamoto, Tetsuya Kuwabara, Taichiro Nishikawa, Kiyotaka Utsunomiya, Minoru Nakamoto, Yusuke Oshima, Yoshihiro Nakai, Kazuhiro Nanjo, Hitoshi Tsuchida, Dai Kamogawa
  • Patent number: 10304581
    Abstract: An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment.
    Type: Grant
    Filed: August 17, 2015
    Date of Patent: May 28, 2019
    Assignees: Sumitomo Electric Industries, Ltd., Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Misato Kusakari, Yoshihiro Nakai, Taichirou Nishikawa, Yoshiyuki Takaki, Yasuyuki Ootsuka
  • Patent number: 10287646
    Abstract: Provided is a porous metal body having superior corrosion resistance to conventional metal porous bodies composed of nickel-tin binary alloys and conventional metal porous bodies composed of nickel-chromium binary alloys. The porous metal body has a three-dimensional network skeleton and contains at least nickel, tin, and chromium. The concentration of chromium contained in the porous metal body is highest at the surface of the skeleton of the porous metal body and decreases toward the inner side of the skeleton. In one embodiment, the chromium concentration at the surface of the skeleton of the porous metal body is more preferably 3% by mass or more and 70% by mass or less.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: May 14, 2019
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki Okuno, Masatoshi Majima, Kengo Tsukamoto, Hitoshi Tsuchida, Hidetoshi Saito
  • Patent number: 10205177
    Abstract: A porous metal body is provided that is inexpensive, usable for an electrode of a fuel cell or the like, and has excellent corrosion resistance. There is provided a porous metal body for a fuel cell, which is a sheet-shaped porous metal body, including at least nickel, tin, and chromium, in which the chromium concentration of at least one surface of the porous metal body is 3% to 50% by mass. In the porous metal body, preferably, the chromium concentration of one surface is higher than the chromium concentration of another surface.
    Type: Grant
    Filed: April 9, 2014
    Date of Patent: February 12, 2019
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki Okuno, Tomoyuki Awazu, Masahiro Kato, Masatoshi Majima, Kengo Tsukamoto, Hitoshi Tsuchida, Hidetoshi Saito
  • Patent number: 10164262
    Abstract: Provided are a porous metal body that is excellent in terms of corrosion resistance and that is suitable for a collector for batteries such as lithium-ion batteries, capacitors, or fuel cells; and methods for producing the porous metal body. A production method includes a step of coating a porous nickel body with an alloy containing at least nickel and tungsten or a metal containing at least tin; and a subsequent step of a heat treatment. Another production method includes a step of forming a nickel-plated layer on a porous base and then continuously forming an alloy-plated layer containing at least nickel and tungsten or tin, a step of removing the porous base, and a step of reducing metal. Such a method can provide a porous metal body in which tungsten or tin is diffused in a porous nickel body or a nickel-plated layer.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: December 25, 2018
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki Okuno, Masahiro Kato, Masatoshi Majima, Tomoyuki Awazu, Hidetoshi Saito, Junichi Nishimura, Keiji Shiraishi, Hitoshi Tsuchida, Kengo Tsukamoto
  • Patent number: 10128513
    Abstract: An object of the present invention is to provide, at a low cost, a porous metal body that can be used in an electrode of a fuel cell and that has better corrosion resistance. The porous metal body has a three-dimensional mesh-like structure and contains nickel (Ni), tin (Sn), and chromium (Cr). A content ratio of the tin is 10% by mass or more and 25% by mass or less, and a content ratio of the chromium is 1% by mass or more and 10% by mass or less. On a cross section of a skeleton of the porous metal body, the porous metal body contains a solid solution phase of chromium, nickel, and tin. The solid solution phase contains a solid solution phase of chromium and trinickel tin (Ni3Sn), the solid solution phase having a chromium content ratio of 2% by mass or less, and does not contain a solid solution phase that is other than a solid solution phase of chromium and trinickel tin (Ni3Sn) and that has a chromium content ratio of less than 1.5% by mass.
    Type: Grant
    Filed: February 20, 2015
    Date of Patent: November 13, 2018
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki Okuno, Masahiro Kato, Tomoyuki Awazu, Masatoshi Majima, Kengo Tsukamoto, Hitoshi Tsuchida, Hidetoshi Saito
  • Patent number: 10020126
    Abstract: A three-dimensional network aluminum porous body which enables to produce an electrode continuously, an electrode using the aluminum porous body, and a method for producing the electrode is disclosed. A long sheet-shaped three-dimensional network aluminum porous body is provided to be used as a base material in a method for producing an electrode including at least winding off, a thickness adjustment step, a lead welding step, an active material filling step, a drying step, a compressing step, a cutting step and winding-up, wherein the three-dimensional network aluminum porous body has a tensile strength of 0.2 MPa or more and 5 MPa or less.
    Type: Grant
    Filed: November 20, 2015
    Date of Patent: July 10, 2018
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Junichi Nishimura, Hideaki Sakaida
  • Patent number: 9953736
    Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: April 24, 2018
    Assignees: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD, SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Yasuyuki Otsuka, Masanobu Yoshimura, Kotaro Maeda, Jun Yoshimoto, Masashi Kimura, Taichirou Nishikawa, Misato Kusakari, Shinichi Kitamura, Hiroaki Takai
  • Publication number: 20180030607
    Abstract: A method for producing a nickel alloy porous body includes a step of applying a coating material that contains a nickel alloy powder of nickel and an added metal, the nickel alloy powder having a volume-average particle size of 10 ?m or less, onto a surface of a skeleton of a resin formed body having a three-dimensional mesh-like structure; a step of plating with nickel the surface of the skeleton of the resin formed body onto which the coating material has been applied; a step of removing the resin formed body; and a step of diffusing the added metal into the nickel by a heat treatment.
    Type: Application
    Filed: January 22, 2016
    Publication date: February 1, 2018
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Kazuki OKUNO, Takahiro HIGASHINO, Tomoyuki AWAZU, Masatoshi MAJIMA, Junichi NISHIMURA, Kengo TSUKAMOTO, Hitoshi TSUCHIDA, Hidetoshi SAITO
  • Patent number: 9711801
    Abstract: Provided are a three-dimensional net-like aluminum porous body in which the diameter of cells in the porous body is uneven in the thickness direction of the porous body; a current collector and an electrode each using the aluminum porous body; and methods for producing these members. The porous body is a three-dimensional net-like aluminum porous body in a sheet form, for a current collector, in which the diameter of cells in the porous body is uneven in the thickness direction of the porous body. When a cross section in the thickness direction of the three-dimensional net-like aluminum porous body is divided into three regions of a region 1, a region 2 and a region 3 in this order, the average cell diameter of the regions 1 and 3 is preferably different from the cell diameter of the region 2.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: July 18, 2017
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Nobuhiro Ota, Akihisa Hosoe, Masatoshi Majima, Koji Nitta, Hajime Ota, Kazuki Okuno, Koutaro Kimura, Kengo Goto, Junichi Nishimura
  • Patent number: 9484570
    Abstract: It is an object of the present invention to provide a method for producing an electrode for an electrochemical element, which can easily adjust a capacity and can produce the electrochemical element at low cost. The method for producing an electrode for an electrochemical element of the present invention includes a thickness adjustment step of compressing an aluminum porous body having continuous pores to adjust the thickness of the aluminum porous body to a predetermined thickness, and a filling step of filling the aluminum porous body, the thickness of which is adjusted, with an active material.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: November 1, 2016
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Junichi Nishimura, Hideaki Sakaida
  • Patent number: 9390866
    Abstract: It is an object of the present invention to provide a current collector including an aluminum porous body suitable for an electrode for a nonaqueous electrolyte battery and an electrode for a capacitor electrode, and an electrode using the current collector. In the three-dimensional network aluminum porous body for a current collector of the present invention, when a sheet-shaped three-dimensional aluminum porous body is divided in the width direction into a central region and two end regions with the central region situated therebetween, the weight per unit area of aluminum in the aluminum porous body at the two end regions is larger than the weight per unit area of aluminum in the aluminum porous body at the central region.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: July 12, 2016
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Hideaki Sakaida, Junichi Nishimura
  • Publication number: 20160156045
    Abstract: An object of the present invention is to inexpensively provide a porous metal body which is usable for an electrode of a fuel cell or the like and which has excellent corrosion resistance. There is provided a porous metal body for a fuel cell, which is a sheet-shaped porous metal body, including at least nickel, tin, and chromium, in which the chromium concentration of at least one surface of the porous metal body is 3% to 50% by mass. In the porous metal body, preferably, the chromium concentration of one surface is higher than the chromium concentration of another surface.
    Type: Application
    Filed: April 9, 2014
    Publication date: June 2, 2016
    Applicants: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Kazuki OKUNO, Tomoyuki AWAZU, Masahiro KATO, Masatoshi MAJIMA, Kengo TSUKAMOTO, Hitoshi TSUCHIDA, Hidetoshi SAITO
  • Patent number: 9337492
    Abstract: It is an object of the present invention to provide an electrochemical element which has a high capacity and is low in cost. The electrochemical element of the present invention is an electrochemical element including an electrode for an electrochemical element, wherein a current collector of positive electrode and/or a current collector of negative electrode is a metal porous body having continuous pores and a mixture containing an active material is filled into the continuous pores.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: May 10, 2016
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Junichi Nishimura, Hideaki Sakaida
  • Patent number: 9270073
    Abstract: It is an object of the present invention to provide a sheet-shaped three-dimensional network aluminum porous body for a current collector which is suitably used for electrodes for nonaqueous electrolyte batteries and electrodes for capacitors, an electrode and a capacitor each using the same. In such a three-dimensional network aluminum porous body for a current collector, the aluminum porous body has been made to have a compressive strength in a thickness direction of 0.2 MPa or more in order to efficiently fill an active material into the sheet-shaped three-dimensional network aluminum porous body.
    Type: Grant
    Filed: May 9, 2013
    Date of Patent: February 23, 2016
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Hideaki Sakaida, Junichi Nishimura