Patents Assigned to Sumitomo Electric Toyama Co., Ltd.
  • Patent number: 9263195
    Abstract: A three-dimensional network aluminum porous body which enables to produce an electrode continuously, an electrode using the aluminum porous body, and a method for producing the electrode. A long sheet-shaped three-dimensional network aluminum porous body is provided to be used as a base material in a method for producing an electrode including at least winding off, a thickness adjustment step, a lead welding step, an active material filling step, a drying step, a compressing step, a cutting step and winding-up, wherein the three-dimensional network aluminum porous body has a tensile strength of 0.2 MPa or more and 5 MPa or less.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: February 16, 2016
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Junichi Nishimura, Hideaki Sakaida
  • Patent number: 9184435
    Abstract: The method for producing an electrode for an electrochemical element of the present invention includes a slurry filling step of filling a slurry containing an active material into continuous pores of an aluminum porous body having the continuous pores, and a slurry drying step of drying the slurry filled, and in this method, after the slurry drying step, an electrode for an electrochemical element is produced without undergoing a compressing step of compressing the aluminum porous body having the slurry filled therein and dried. In the electrode, a mixture containing an active material is filled into continuous pores of an aluminum porous body having the continuous pores, and porosity (%) of the aluminum porous body, the porosity being represented by the following equation, is 15 to 55%.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: November 10, 2015
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Junichi Nishimura, Hideaki Sakaida
  • Patent number: 9147504
    Abstract: An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: September 29, 2015
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Misato Kusakari, Yoshihiro Nakai, Taichirou Nishikawa, Yoshiyuki Takaki, Yasuyuki Ootsuka
  • Patent number: 9123961
    Abstract: Provided are a three-dimensional net-like aluminum porous body in which the diameter of cells in the porous body is uneven in the thickness direction of the porous body; a current collector and an electrode each using the aluminum porous body; and methods for producing these members. The porous body is a three-dimensional net-like aluminum porous body in a sheet form, for a current collector, in which the diameter of cells in the porous body is uneven in the thickness direction of the porous body. When a cross section in the thickness direction of the three-dimensional net-like aluminum porous body is divided into three regions of a region 1, a region 2 and a region 3 in this order, the average cell diameter of the regions 1 and 3 is preferably different from the cell diameter of the region 2.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: September 1, 2015
    Assignees: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Nobuhiro Ota, Akihisa Hosoe, Masatoshi Majima, Koji Nitta, Hajime Ota, Kazuki Okuno, Koutaro Kimura, Kengo Goto, Junichi Nishimura
  • Patent number: 8913368
    Abstract: A three-dimensional network aluminum porous body in which the amount of aluminum forming a skeleton of the three-dimensional network aluminum porous body is uneven in the thickness direction, and a current collector and an electrode each using the aluminum porous body, and a manufacturing method thereof. In such a sheet-shaped three-dimensional network aluminum porous body for a current collector, the amount of aluminum forming a skeleton of the three-dimensional network aluminum porous body is uneven in the thickness direction. For example, in the case where a cross section in the thickness direction of the three-dimensional network aluminum porous body is divided into three regions of a region 1, a region 2 and a region 3 in this order, each region is configured so that the average of the amounts of aluminum in the region 1 and the region 3 differs from the amount of aluminum in the region 2.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: December 16, 2014
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Hideaki Sakaida, Junichi Nishimura
  • Publication number: 20140087206
    Abstract: Provided is a porous metal body containing at least nickel, tin, and chromium. An example of a method of producing such a porous metal body is a method including a conductive-coating-layer formation step of forming a conductive coating layer containing chromium on a surface of a porous base formed of a resin material; a metal-layer formation step of forming a nickel layer and a tin layer in any order on a surface of the conductive coating layer; a removal step of removing the porous base; and a diffusion step of, by a heat treatment, causing interdiffusion of metal atoms between the nickel layer and the tin layer and diffusing chromium contained in the conductive coating layer into the nickel layer and the tin layer.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 27, 2014
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazuki OKUNO, Masahiro KATO, Tomoyuki AWAZU, Masatoshi MAJIMA, Kengo TSUKAMOTO, Hitoshi TSUCHIDA, Hidetoshi SAITO
  • Publication number: 20130333209
    Abstract: It is an object of the present invention to provide a method for producing an electrode for an electrochemical element, which can easily adjust a capacity and can produce the electrochemical element at low cost. The method for producing an electrode for an electrochemical element of the present invention includes a thickness adjustment step of compressing an aluminum porous body having continuous pores to adjust the thickness of the aluminum porous body to a predetermined thickness, and a filling step of filling the aluminum porous body, the thickness of which is adjusted, with an active material.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 19, 2013
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES., LTD.
    Inventors: Akihisa HOSOE, Kazuki OKUNO, Hajime OTA, Koutarou KIMURA, Kengo GOTO, Junichi NISHIMURA, Hideaki SAKAIDA
  • Publication number: 20130330614
    Abstract: In an electrode according to the present invention including a three-dimensional network aluminum porous body as a base material, the electrode is a sheet-shaped electrode, and a cell of the three-dimensional network aluminum porous body has an elliptic shape having a minor axis in the thickness direction of the electrode in a cross section parallel to the longitudinal direction and thickness direction of the electrode, and a cell of the three-dimensional network aluminum porous body has an elliptic shape having a minor axis in the thickness direction of the electrode in a cross section parallel to the width direction and thickness direction of the electrode. The electrode is preferably obtained by subjecting the three-dimensional network aluminum porous body to at least a current collecting lead welding step, an active material filling step and a compressing step.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 12, 2013
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akihisa HOSOE, Kazuki OKUNO, Hajime OTA, Koutarou KIMURA, Kengo GOTO, Hideaki SAKAIDA, Junichi NISHIMURA
  • Publication number: 20130295459
    Abstract: A porous metallic body has a three-dimensional network structure composed of an alloy containing at least Ni and Cr, the porous metallic body having a skeleton formed of a hollow core and a shell, in which when a cross section of the shell is evenly divided in the thickness direction into three portions, i.e., an outer portion, a central portion, and an inner portion, and when concentrations in percent by weight of Cr in the outer portion, the central portion, and the inner portions are defined as a, b, and c, a, b, and c satisfy the relation given by expression (1): |(a+c)/2?b|/(a+b+c)/3<0.
    Type: Application
    Filed: January 6, 2012
    Publication date: November 7, 2013
    Applicant: SUMITOMO ELECTRIC TOYAMA CO., LTD.
    Inventors: Junichi Nishimura, Hitoshi Tsuchida, Hidetoshi Saito
  • Publication number: 20130288124
    Abstract: It is an object of the present invention to provide a current collector including an aluminum porous body suitable for an electrode for a nonaqueous electrolyte battery and an electrode for a capacitor electrode, and an electrode using the current collector. In the three-dimensional network aluminum porous body for a current collector of the present invention, when a sheet-shaped three-dimensional aluminum porous body is divided in the width direction into a central region and two end regions with the central region situated therebetween, the weight per unit area of aluminum in the aluminum porous body at the two end regions is larger than the weight per unit area of aluminum in the aluminum porous body at the central region.
    Type: Application
    Filed: February 14, 2012
    Publication date: October 31, 2013
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Hideaki Sakaida, Junichi Nishimura
  • Publication number: 20130266862
    Abstract: Provided are a porous metal body that is excellent in terms of corrosion resistance and that is suitable for a collector for batteries such as lithium-ion batteries, capacitors, or fuel cells; and methods for producing the porous metal body. A production method includes a step of coating a porous nickel body with an alloy containing at least nickel and tungsten or a metal containing at least tin; and a subsequent step of a heat treatment. Another production method includes a step of forming a nickel-plated layer on a porous base and then continuously forming an alloy-plated layer containing at least nickel and tungsten or tin, a step of removing the porous base, and a step of reducing metal. Such a method can provide a porous metal body in which tungsten or tin is diffused in a porous nickel body or a nickel-plated layer.
    Type: Application
    Filed: November 30, 2011
    Publication date: October 10, 2013
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Kazuki Okuno, Masahiro Kato, Masatoshi Majima, Tomoyuki Awazu, Hidetoshi Saito, Junichi Nishimura, Keiji Shiraishi, Hitoshi Tsuchida, Kengo Tsukamoto
  • Publication number: 20130255840
    Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.
    Type: Application
    Filed: May 17, 2013
    Publication date: October 3, 2013
    Applicants: AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO WIRING SYSTEMS, LTD.
    Inventors: Yasuyuki OTSUKA, Masanobu YOSHIMURA, Kotaro MAEDA, Jun YOSHIMOTO, Masashi KIMURA, Taichirou NISHIKAWA, Misato KUSAKARI, Shinichi KITAMURA, Hiroaki TAKAI
  • Patent number: 8541134
    Abstract: In an electrode according to the present invention including a three-dimensional network aluminum porous body as a base material, the electrode is a sheet-shaped electrode, and a cell of the three-dimensional network aluminum porous body has an elliptic shape having a minor axis in the thickness direction of the electrode in a cross section parallel to the longitudinal direction and thickness direction of the electrode, and a cell of the three-dimensional network aluminum porous body has an elliptic shape having a minor axis in the thickness direction of the electrode in a cross section parallel to the width direction and thickness direction of the electrode. The electrode is preferably obtained by subjecting the three-dimensional network aluminum porous body to at least a current collecting lead welding step, an active material filling step and a compressing step.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: September 24, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Hideaki Sakaida, Junichi Nishimura
  • Patent number: 8528375
    Abstract: It is an object of the present invention to provide a method for producing an electrode for an electrochemical element, which can easily adjust a capacity and can produce the electrochemical element at low cost. The method for producing an electrode for an electrochemical element of the present invention includes a thickness adjustment step of compressing an aluminum porous body having continuous pores to adjust the thickness of the aluminum porous body to a predetermined thickness, and a filling step of filling the aluminum porous body, the thickness of which is adjusted, with an active material.
    Type: Grant
    Filed: July 25, 2012
    Date of Patent: September 10, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Junichi Nishimura, Hideaki Sakaida
  • Patent number: 8497037
    Abstract: It is an object of the present invention to provide an electrode using a current collector made of an aluminum porous body which is suitably used for an electrode for a nonaqueous electrolyte battery and an electrode for a capacitor, and a method for producing the electrode. In the current collector of the present invention, a strip-shaped compressed part compressed in a thickness direction is formed at one end part of a three-dimensional network aluminum porous body and a tab lead is bonded to the compressed part by welding. The width of the compressed part is 2 to 10 mm. Further, the electrode is formed by filling the current collector with an active material.
    Type: Grant
    Filed: July 2, 2012
    Date of Patent: July 30, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Hideaki Sakaida, Junichi Nishimura
  • Patent number: 8476529
    Abstract: An aluminum electric wire includes an annealing conductor that is made up of elemental wires made of an aluminum alloy containing 0.90-1.20 mass % Fe, 0.10-0.25 mass % Mg, 0.01-0.05 mass % Ti, 0.0005-0.0025 mass % B, and the balance being Al and has a tensile strength of 110 MPa or more, a breaking elongation of 15% or more, and an electric conductivity of 58% IACS or more, and an insulating material covering the conductor. The wire is produced by casting an aluminum alloy prepared by rapidly solidifying a molten aluminum alloy having the above composition, producing the wires by subjecting the alloy to plasticity processing, producing the conductor by bunching the wires, subjecting the wires or the conductor to annealing at 250° C. or higher, and then covering the conductor with the insulator.
    Type: Grant
    Filed: October 23, 2008
    Date of Patent: July 2, 2013
    Assignees: Autonetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Yasuyuki Otsuka, Masanobu Yoshimura, Kotaro Maeda, Jun Yoshimoto, Masashi Kimura, Taichirou Nishikawa, Misato Kusakari, Shinichi Kitamura, Hiroaki Takai
  • Patent number: 8465875
    Abstract: It is an object of the present invention to provide a sheet-shaped three-dimensional network aluminum porous body for a current collector which is suitably used for electrodes for nonaqueous electrolyte batteries and electrodes for capacitors, an electrode and a capacitor each using the same. In such a three-dimensional network aluminum porous body for a current collector, the aluminum porous body has been made to have a compressive strength in a thickness direction of 0.2 MPa or more in order to efficiently fill an active material into the sheet-shaped three-dimensional network aluminum porous body.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: June 18, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Akihisa Hosoe, Kazuki Okuno, Hajime Ota, Koutarou Kimura, Kengo Goto, Hideaki Sakaida, Junichi Nishimura
  • Publication number: 20130126231
    Abstract: An aluminum alloy, an aluminum alloy wire, an aluminum alloy stranded wire, a covered electric wire, and a wire harness that are of high toughness and high electrical conductivity, and a method of manufacturing an aluminum alloy wire are provided. The aluminum alloy wire contains not less than 0.005% and not more than 2.2% by mass of Fe, and a remainder including Al and an impurity. It may further contain not less than 0.005% and not more than 1.0% by mass in total of at least one additive element selected from Mg, Si, Cu, Zn, Ni, Mn, Ag, Cr, and Zr. The Al alloy wire has an electrical conductivity of not less than 58% IACS and an elongation of not less than 10%. The Al alloy wire is manufactured through the successive steps of casting, rolling, wiredrawing, and softening treatment.
    Type: Application
    Filed: December 19, 2012
    Publication date: May 23, 2013
    Applicants: SUMITOMO ELECTRIC INDUSTRIES, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO WIRING SYSTEMS, LTD., AUTONETWORKS TECHNOLOGIES, LTD.
    Inventors: SUMITOMO ELECTRIC INDUSTRIES, LTD., AUTONETWORKS TECHNOLOGIES, LTD., SUMITOMO WIRING SYSTEMS, LTD., SUMITOMO ELECTRIC TOYAMA CO., LTD.
  • Publication number: 20130045425
    Abstract: It is an object of the present invention to provide a three-dimensional network aluminum porous body which can be used for a process continuously producing an electrode and enables to produce a current collector having small electric resistance in the current collecting direction, and an electrode using the aluminum porous body, and a production method thereof. In a sheet-shaped three-dimensional network aluminum porous body for a current collector, when one of two directions orthogonal to each other is taken as an X-direction and the other is taken as a Y-direction, a cell diameter in the X-direction of the three-dimensional network aluminum porous body differs from a cell diameter in the Y-direction thereof.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 21, 2013
    Applicants: SUMITOMO ELECTRIC TOYAMA CO., LTD., SUMITOMO ELECTRIC INDUSTRIES, LTD.
    Inventors: Akihisa HOSOE, Kazuki OKUNO, Hajime OTA, Koutarou KIMURA, Kengo GOTO, Hideaki SAKAIDA, Junichi NISHIMURA
  • Patent number: 8377567
    Abstract: A porous metal member composed of an alloy at least containing nickel and tungsten is provided. The alloy may contain 50 to 80 wt % of nickel and 20 to 50 wt % of tungsten and may further contain 10 wt % or less of phosphorus and/or 10 wt % or less of boron. Such a porous metal member can be produced by, for example, making a porous base such as a urethane foam be electrically conductive, forming an alloy film containing nickel and tungsten, then removing the porous base from the alloy film, and subsequently reducing the alloy.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: February 19, 2013
    Assignees: Sumitomo Electric Industries, Ltd., Sumitomo Electric Toyama Co., Ltd.
    Inventors: Kazuki Okuno, Masahiro Kato, Tomoyuki Awazu, Masatoshi Majima, Hidetoshi Saito, Keiji Shiraishi, Hitoshi Tsuchida, Junichi Nishimura