Patents Assigned to Sumitomo Light Metal Industries, Ltd.
  • Patent number: 7018722
    Abstract: The present invention provides an aluminum alloy fin material for heat exchangers which has a thickness of 80 ?m (0.08 mm) or less and excels in joinability to a tube material and in intergranular corrosion resistance. The aluminum alloy fin material is an aluminum alloy bare fin material or a brazing fin material which has a thickness of 80 ?m or less and is incorporated into a heat exchanger made of an aluminum alloy manufactured by brazing through an Al—Si alloy filler metal. The structure of the core material before brazing is a fiber structure, and the crystal grain diameter of the structure after brazing is 50–250 ?m. The Si concentration in the Si dissolution area on the surface of the fin material and at the center of the thickness of the fin material after brazing is preferably 0.8% or more and 0.7% or less, respectively.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: March 28, 2006
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Taketoshi Toyama, Koji Hirao, Takashi Hatori, Yuji Hisatomi, Yasunaga Itoh, Yoshifusa Shoji
  • Patent number: 6946095
    Abstract: The invention provides an internal filter with an improved filtering ability of removing particularly fine inclusion particles from molten aluminum or molten aluminum alloy. The internal filter includes an aggregate meshed member made of a refractory material and a coating layer formed on a surface of the aggregate meshed member. The coating layer contains a soda silicate that is able to be softened or viscous at a temperature of the molten aluminum alloy.
    Type: Grant
    Filed: June 8, 2001
    Date of Patent: September 20, 2005
    Assignees: Kabushiki Kaisha Kobe Seiko Sho, Showa Denko K.K., Sky Aluminium Co., Ltd., Sumitomo Light Metal Industries, Ltd., Nippon Light Metal Company, Ltd., The Furukawa Electric Co., Ltd., Mitsubishi Aluminum Co., Ltd.
    Inventors: Masakatsu Yokota, Kenji Osumi, Yutaka Nagakura
  • Publication number: 20050188538
    Abstract: A method of manufacturing a cross fin tube and a cross fin type heat exchanger including the cross fin tube obtained in accordance with the manufacturing method. A tube-expanding plug has cutout-forming protuberances which are formed on an outer circumferential surface thereof with a number of 60-160 per circumference such that the cutout-forming protuberances extend in a direction which intersects primary grooves which are previously formed on an inner circumferential surface of a heat transfer tube, and at the same time when the heat transfer tube and plate fins are fixed integrally to each other in accordance with the mechanically tube-expanding operation, secondary grooves which are cross grooves with respect to the primary grooves are formed to have a depth (d2) which is held in a range of 10-40% of a depth (d1) of the primary grooves.
    Type: Application
    Filed: April 25, 2005
    Publication date: September 1, 2005
    Applicant: Sumitomo Light Metal Industries, Ltd.
    Inventors: Takashi Kondo, Naoe Sasaki, Shiro Kakiyama
  • Patent number: 6921010
    Abstract: Method of joining together two planar members, by a friction stir welding operation wherein a rotary tool having a probe is moved relative to a joint region defined between the mutually butted planar members such that the probe is rotated and inserted in the joint region. The welding operation is performed by using a tab plate having a cutout formed in its end face such that the cutout has a width not smaller than a radius of a peripheral circle to be described by the shoulder surface, and a depth not smaller than a minimum radius of the probe and not larger than the radius of the peripheral circle.
    Type: Grant
    Filed: October 27, 2003
    Date of Patent: July 26, 2005
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Sunao Tanaka, Masaki Kumagai
  • Patent number: 6892928
    Abstract: Method of manufacturing a tubular end product, wherein an aluminum plate is formed into a generally cylindrical body such that opposite end sections of the cylindrical body are flattened and butted together along a joint region extending parallel to an axis of the cylindrical body, and such that each of the opposite flattened end sections has a predetermined width L as measured normal to the joint region, and the opposite flattened end sections are joined together at the joint region, by a friction stir butt welding operation wherein a rotary tool having a circular shoulder surface and a probe extending from the shoulder surface is moved relative to the cylindrical body while the shoulder surface is in rubbing contact with the flattened end sections, with the probe being rotated with the rotary tool and inserted in the joint region.
    Type: Grant
    Filed: September 2, 2003
    Date of Patent: May 17, 2005
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Sunao Tanaka, Masaki Kumagai
  • Patent number: 6865920
    Abstract: A clad billet 120 has a core material 122 of which outer surface is coated by a coating material 124. A circular front plate 126 is provided at the head of the clad billet 120. The front plate 126 is made of the same material as the coating material 124. As the clad billet 120 is extruded, the front plate 126 first flows out. Accordingly, instead of the core material 122, the front plate 126 forms dead metal. Moreover, since this front plate 126 is made of the same material as the coating material 124, a defective clad such as a three layer clad are not formed. Also, since a billet thrusting face 102a is tapered toward an axis A of a die at an angle of 55-85 degrees, the volume of dead metal itself is reduced, and therefore it is possible to flow out the defective clad, even if it is generated, at an early stage of extrusion.
    Type: Grant
    Filed: September 27, 2002
    Date of Patent: March 15, 2005
    Assignee: Sumitomo Light Metal Industries, Ltd
    Inventors: Hideyuki Kondo, Hideo Sano, Toshiaki Doi
  • Patent number: 6849136
    Abstract: An object of the present invention is to provide a filler metal for an aluminum brazing sheet for heat exchangers capable of preventing or controlling occurrence of a melting hole during heating for brazing, and a method of manufacturing the same. In an Al—Si alloy filler metal which is clad on the aluminum brazing sheet and melted during heating for brazing, the maximum particle diameter of a coarse Si particle crystallized in the eutectic structure of the filler metal is 20 ?m or less. Provided that an average value and a standard deviation in a normal distribution of the particle diameter of the coarse Si particle in the filler metal are respectively ? and ?, (?+3?) is preferably 10 ?m or less. This brazing sheet is obtained by a method of adding a specific amount of Na, Sr, or Sb to the filler metal, a method of limiting the amount of impurities in the filler metal within a specific range, a method of specifying a cooling rate during the casting of the filler metal, or the like.
    Type: Grant
    Filed: July 25, 2002
    Date of Patent: February 1, 2005
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Yoshiharu Hasegawa, Koji Hirao, Hiroshi Nishikawa, Yasunaga Itoh, Naoki Yamashita, Shinichi Tani, Keiichi Sakai, Eiichi Kashima
  • Publication number: 20040245685
    Abstract: The invention provides an internal filter with an improved filtering ability of removing particularly fine inclusion particles from molten aluminum or molten aluminum alloy. The internal filter includes an aggregate meshed member made of a refractory material and a coating layer formed on a surface of the aggregate meshed member. The coating layer contains a soda silicate that is able to be softened or viscous at a temperature of the molten aluminum alloy.
    Type: Application
    Filed: June 8, 2001
    Publication date: December 9, 2004
    Applicants: KABUSHIKI KAISHA KOBE SEIKO SHO, SHOWA DENKO K.K., SKY ALUMINIUM CO., LTD., SUMITOMO LIGHT METAL INDUSTRIES, LTD., NIPPON LIGHT METAL COMPANY, LTD., THE FURUKAWA ELECTRIC CO., LTD., MITSUBISHI ALUMINUM CO., LTD.
    Inventors: Masakatsu Yokota, Kenji Osumi, Yutaka Nagakura
  • Patent number: 6800345
    Abstract: An aluminum extruded multi-cavity flat tube for use in an automotive heat exchanger having excellent brazing characteristics. At least one of the flat surfaces of said aluminum extruded multi-cavity flat tube is coated with a flux composition comprising a brazing flux and a synthetic resin based, as its main constituent, on a methacrylate homopolymer or a methacrylate copolymer or, alternatively, with a brazing composition comprising a brazing flux, brazing metals, and said synthetic resin. In a preferred embodiment, such a coating is provided by applying to a surface of an aluminum extruded multi-cavity flat tube, said compositions as added to an organic solvent and having a molecular structure wherein the atomic ratio of carbon to oxygen is between 2 and 3, by a roll-transfer printing technique.
    Type: Grant
    Filed: February 18, 1999
    Date of Patent: October 5, 2004
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Shoei Teshima, Yoshiharu Hasegawa, Ichiro Taninaka, Tsutomu Usami, Yuji Hisatomi
  • Patent number: 6743308
    Abstract: The present invention provides an aluminum alloy structural plate excelling in strength and corrosion resistance, in particular, resistance to stress corrosion cracking, and a method of manufacturing the aluminum alloy plate. This aluminum alloy structural plate includes 4.8-7% Zn, 1-3% Mg, 1-2.5% Cu, and 0.05-0.25% Zr, with the remaining portion consisting of Al and impurities, wherein the aluminum alloy structural plate has a structure in which grain boundaries with a ratio of misorientations of 3-10° is 25% or more at the plate surface. The aluminum alloy structural plate is manufactured by: homogenizing an ingot of an aluminum alloy having the above composition; hot rolling the ingot; repeatedly rolling the hot-rolled product at 400-150° C. so that the degree of rolling is 70% or more to produce a plate with a specific thickness, or repeatedly rolling the hot-rolled product at a material temperature of 400-150° C. in a state in which rolls for hot rolling are heated at 40° C.
    Type: Grant
    Filed: November 2, 2001
    Date of Patent: June 1, 2004
    Assignees: Kabushiki Kaisha Kobe Seiko Sho., Sumitomo Light Metal Industries, Ltd., Nippon Light Metal Co., Ltd., The Furukawa Electric Co., Ltd., Mitsubishi Aluminum Co., Ltd.
    Inventors: Hiroki Tanaka, Hiroki Esaki, Tadashi Minoda
  • Publication number: 20040084506
    Abstract: Method of joining together two planar members, by a friction stir welding operation wherein a rotary tool having a probe is moved relative to a joint region defined between the mutually butted planar members such that the probe is rotated and inserted in the joint region. The welding operation is performed by using a tab plate having a cutout formed in its end face such that the cutout has a width not smaller than a radius of a peripheral circle to be described by the shoulder surface, and a depth not smaller than a minimum radius of the probe and not larger than the radius of the peripheral circle.
    Type: Application
    Filed: October 27, 2003
    Publication date: May 6, 2004
    Applicant: Sumitomo Light Metal Industries, Ltd.
    Inventors: Sunao Tanaka, Masaki Kumagai
  • Publication number: 20040041005
    Abstract: Method of manufacturing a tubular end product, wherein an aluminum plate is formed into a generally cylindrical body such that opposite end sections of the cylindrical body are flattened and butted together along a joint region extending parallel to an axis of the cylindrical body, and such that each of the opposite flattened end sections has a predetermined width L as measured normal to the joint region, and the opposite flattened end sections are joined together at the joint region, by a friction stir butt welding operation wherein a rotary tool having a circular shoulder surface and a probe extending from the shoulder surface is moved relative to the cylindrical body while the shoulder surface is in rubbing contact with the flattened end sections, with the probe being rotated with the rotary tool and inserted in the joint region.
    Type: Application
    Filed: September 2, 2003
    Publication date: March 4, 2004
    Applicant: Sumitomo Light Metal Industries, Ltd.
    Inventors: Sunao Tanaka, Masaki Kumagai
  • Patent number: 6638376
    Abstract: An aluminum alloy piping material exhibiting good corrosion resistance and having an excellent workability, such as bulge formation capability at the pipe ends. The aluminum alloy piping material is suitably used for pipes connecting automotive radiators and heaters or pipes connecting evaporators, condensers, and compressors. The aluminum alloy material is formed from an aluminum alloy which contains 0.3-1.5% of Mn, 0.20% or less of Cu, 0.06-0.30% of Ti, 0.01-0.20% of Fe, and 0.01-0.20% of Si, with the balance being Al and impurities, wherein, among Si compounds, Fe compounds, and Mn compounds present in the matrix, the number of compounds with a particle diameter of 0.5 &mgr;m or more is 2×104 or less per mm2. The aluminum alloy piping material may further comprise 0.4% or less of Mg.
    Type: Grant
    Filed: September 14, 2001
    Date of Patent: October 28, 2003
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Hirokazu Tanaka, Yoshifusa Shoji, Takahiro Koyama, Toshihiko Fukuda
  • Patent number: 6638377
    Abstract: An aluminum alloy piping material for automotive piping excelling in corrosion resistance and workability and a method of fabricating the same. The aluminum alloy piping material is made of an aluminum alloy which contains 0.3-1.5% of Mn, 0.01-0.20% of Fe, and 0.01-0.20% of Si, wherein the content of Cu as impurities is limited to 0.05% or less, with the balance being Al and impurities, wherein, among Si compounds, Fe compounds, and Mn compounds present in the alloy's matrix, the number of compounds with a particle diameter (equivalent circle diameter, hereinafter the same) of 0.5 &mgr;m or more is 3×104 or less per mm2. The aluminum alloy piping material has a tensile strength of 70-130 MPa (temper: O material). An ingot of an aluminum alloy having the composition is hot extruded. The resulting extruded pipe is cold drawn at a working ratio of 30% or more and annealed.
    Type: Grant
    Filed: September 17, 2001
    Date of Patent: October 28, 2003
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Takahiro Koyama, Hirokazu Tanaka, Yoshifusa Shoji
  • Patent number: 6627330
    Abstract: An aluminum alloy brazing sheet has a quad-layer structure made of an outer filler material, intermediate layer material, core material, and inner filler material. The core material contains 0.5-1.6% of Mn, 0.10-0.50% of Cu, 0.05-0.50% of Mg, and 0.06-0.30% of Ti, and, as impurities, 0.5% or less of Fe, 0.5% or less of Si, and 0.1% or less of Zn, with the remainder being Al and unavoidable impurities; the intermediate layer material contains 0.2-1.5% of Mg and at least one of 0.5-4% of Zn, 0.005-0.2% of In, and 0.01-0.2% of Sn, and, as impurities, 0.3% or less of Si, 0.3% or less of Fe, 0.05% or less of Cu, 0.05% or less of Mn, and 0.3% or less of Ti, with the remainder being Al and unavoidable impurities. The thickness of the intermediate layer material is 50 &mgr;m or more and no more than the thickness of the core material. The outer filler material and the inner filler material are Al—Si—Mg alloys, the outer filler material, preferably including at least one of 0.005-0.2% of In and 0.01-0.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: September 30, 2003
    Assignees: Sumitomo Light Metal Industries, Ltd., Denso Corporation
    Inventors: Masaki Shimizu, Haruhiko Miyachi, Toshihiko Fukuda, Hiroshi Ikeda, Yoshifusa Shoji
  • Publication number: 20030005584
    Abstract: An assembly including at least one heat conductive member each constituted by an aluminum-based die-casting, and a heat pipe attached at a fixing portion thereof to the heat conductive member. The assembly is characterized in that the aluminum-based die-casting is formed of a castable aluminum alloy which includes up to 0.5% by weight of silicon; that the heat conductive member has a groove formed in a surface thereof; and that the heat pipe is accommodated at the fixing portion in the groove, and is held fixed at the fixing portion in the groove by plastically deforming at least one of opposite side walls defining the groove, toward an outer circumferential surface of the heat pipe.
    Type: Application
    Filed: June 27, 2002
    Publication date: January 9, 2003
    Applicant: Sumitomo Light Metal Industries, Ltd.
    Inventors: Noritoshi Komatsu, Osamu Aoya, Takehiro Chinen, Tadashi Katsui, Yoshiaki Udagawa
  • Patent number: 6464805
    Abstract: An Al—Mg—Si—Cu aluminum alloy plate excelling in strength and formability and exhibiting improved filiform corrosion resistance which is suitably used for automotive body panels. The aluminum alloy plate contains 0.25-0.6% of Mg (mass %, hereinafter the same), 0.9-1.1% of Si, 0.6-1.0% of Cu, and at least one of 0.20% or less of Mn and 0.10% or less of Cr, with the balance consisting of Al and impurities, wherein the number of Q phases (Cu—Mg—Si—Al phases) with a size of 2 &mgr;m or more in diameter present in a matrix is 150 per mm2 or more. The aluminum alloy plate is fabricated by homogenizing an ingot of an aluminum alloy having the above composition at 530° C. or more, cooling the ingot to 450° C. or less at a cooling rate of 30° C./hour or less, hot-rolling the ingot, cold-rolling the hot-rolled product, and providing the cold-rolled product with a solution heat treatment.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: October 15, 2002
    Assignees: Nissan Motor Co., Ltd., Sumitomo Light Metal Industries, Ltd.
    Inventors: Shinji Matsuda, Tsutomu Hattori, Masahito Katsukura, Tadashi Minoda, Hideo Yoshida, Shinichi Matsuda, Mineo Asano, Tsutomu Furuyama
  • Patent number: 6361882
    Abstract: A high-strength aluminum alloy clad material for heat exchangers which excels in corrosion resistance and formability before brazing and has improved strength after brazing. The aluminum alloy clad material is made up of a core material and a brazing material, with one or both sides of the core material clad with the brazing material. The core material is made up of an aluminum alloy containing from 0.3% to less than 0.6% of Mn, from more than 0.6% to 1.0% of Cu, less than 0.1% of Si, 0.3% or less of Fe, and from 0.06% to 0.35% of Ti, with the remainder being Al and impurities; and the brazing material used to clad the core material is made up of an Al—Si aluminum alloy in which the Ca content is limited to 0.006% or less.
    Type: Grant
    Filed: October 31, 2000
    Date of Patent: March 26, 2002
    Assignee: Sumitomo Light Metal Industries, Ltd.
    Inventors: Yoshifusa Shoji, Kohichi Maeda, Toshihiko Fukuda
  • Patent number: 6316126
    Abstract: An aluminum alloy clad material for heat exchangers exhibiting excellent erosion-corrosion resistance, corrosion resistance, pitting resistance, and brazability, which is suitably used as an aluminum alloy clad sheet for forming a constituent member, in particular, a tube for an aluminum heat exchanger such as a radiator and heater, and as a pipe for circulating a working fluid in the aluminum heat exchanger or a pipe connected to the heat exchangers. The aluminum alloy clad sheet comprises a sacrificial anode material clad on one side of a core material, wherein the core material comprises an Al—Mn alloy and the sacrificial anode material comprises an aluminum alloy, for example, an aluminum alloy comprising 3.0-12.0% of Si with the remaining portion consisting of Al and impurities, or an aluminum alloy comprising 3.0-12.0% of Si, 1-10% of Zn, and 0.15-1.2% of Fe with the remaining portion consisting of Al and impurities.
    Type: Grant
    Filed: October 14, 1999
    Date of Patent: November 13, 2001
    Assignees: Denso Corporation, Sumitomo Light Metal Industries, Ltd.
    Inventors: Yoshiharu Hasegawa, Haruhiko Miyachi, Hisao Kato, Hirokazu Tanaka, Hiroshi Ikeda, Yoshifusa Shoji
  • Patent number: 6293014
    Abstract: The present invention relates to an improvement in a fixation roll consisting of several heat pipes embedded in the thick wall of the hollow cylindrical core in the axial direction, and features the fact that each of the heat pipes consisting of a copper tube and encapsulated water as the operating fluid is heated to allow the water as the operating fluid to evaporate to generate pressure and cause the heat pipe to expand and tightly fit onto the inner wall surface of the cylindrical bore in the core so as to form an integral and monolithic structure comprising the heat pipe and the core. Since the heat pipe is firmly fitted to the inner wall surface of the cylindrical bore in the core, a high quality fixation roll exhibiting a uniform surface temperature distribution is provided. Since the installation of the heat pipe is effected by means of the tube expansion, no strict dimensional control of the diameters of the bore for inserting the heat pipe as well as the heat pipe is required.
    Type: Grant
    Filed: June 25, 1996
    Date of Patent: September 25, 2001
    Assignees: Nitto Kogyo Co., Ltd., Sumitomo Light Metal Industries, Ltd.
    Inventors: Kesaaki Kitazawa, Shigetoshi Takasu, Takehiro Chinen