Patents Assigned to Sumitomo Metal Mining Co., Ltd.
  • Patent number: 10704120
    Abstract: The present invention provides a method for easy and efficient recovery of high purity scandium from nickel oxide ore, the method comprising: an adsorption step for passing a scandium-containing solution through an ion exchange resin to adsorb scandium on the ion exchange resin; an elution step for eluting scandium from the ion exchange resin to obtain a post-elution solution; an impurity extraction step in which after the elution step, the scandium-containing solution is subjected to a first solvent extraction using an amine-based impurity extractant and is separated into a first aqueous phase containing scandium and into a first organic phase containing impurities; and a scandium extraction step in which the first aqueous phase is subjected to a second solvent extraction using an amide derivative-containing scandium extractant to obtain a second organic phase containing scandium.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: July 7, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Itsumi Matsuoka, Hiroshi Kobayashi, Yusuke Senba
  • Patent number: 10697043
    Abstract: In separating scandium and thorium from a leachate obtained by adding sulfuric acid to a nickel oxide ore containing scandium and thorium, scandium is recovered from only one system. The method according to the invention comprises: an extraction step S1 for treating a nickel oxide ore containing scandium and thorium with sulfuric acid to give an acidic solution (a feed solution for extraction), and then solvent-extracting the feed solution with the use of a scandium extractant containing an amide derivative to thereby divide the feed solution into an organic extract (a first organic phase) containing scandium and thorium and a liquid extract (a first aqueous phase) containing impurities; and a washing step S2 for adding sulfuric acid to the organic extract (the first organic phase) and thus dividing the same into washed organic matters (a second organic phase) containing thorium and a washed liquid (a second aqueous phase) containing scandium.
    Type: Grant
    Filed: March 1, 2017
    Date of Patent: June 30, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yusuke Senba, Itsumi Matsuoka, Hiroshi Kobayashi
  • Patent number: 10695830
    Abstract: Provided is a copper powder which can be suitably utilized in applications such as an electrically conductive paste and an electromagnetic wave shield. A copper powder according to the present invention has a dendritic shape having a linearly grown main stem and a plurality of branches separated from the main stem, the main stem and the branches are constituted as flat plate-shaped copper particles having a cross-sectional average thickness of from 0.02 ?m to 5.0 ?m to be determined by scanning electron microscopic SEM observation gather, the average particle diameter D50 of the copper powder is from 1.0 ?m to 100 ?m, and the maximum height in the vertical direction with respect to the flat plate-shaped surface of the copper particles is 1/10 or less with respect to the maximum length in the horizontal direction of the flat plate-shaped surface of the copper particles.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: June 30, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroshi Okada, Yu Yamashita
  • Patent number: 10689262
    Abstract: A method for producing a nickel-containing hydroxide is provided that includes a particle growth step of promoting growth of nickel-containing hydroxide particles by neutralization crystallization in an aqueous solution accommodated in an agitation tank. In the particle growth step, an averaged value of the maximum accelerations of the flows of streamlines for the aqueous solution is greater than 600 m/s2.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: June 23, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Shuhei Nakakura, Kazuhiko Tsuchioka, Koichiro Maki, Motoaki Saruwatari, Kazuomi Ryoshi, Yoshihiko Nakao, Masafumi Yoshida
  • Patent number: 10680239
    Abstract: A coated nickel hydroxide powder that has improved dispersibility in a paste to inhibit agglomeration and can be densely packed in a three-dimensional metal porous body in the preparation of a positive electrode for alkaline secondary battery includes nickel hydroxide particles having a coating layer made of a cobalt compound formed on a surface of the nickel hydroxide particles, wherein when 10 mL of water is added to 10 g of the coated nickel hydroxide powder to prepare a suspension, the suspension has a pH of 10.2 or higher (as measured at 25° C.). The coated nickel hydroxide powder obtained through a crystallization step and a coating step is washed in a washing step until an amount of ammonium ions eluted into a suspension obtained by adding 10 mL of water to 10 g of the coated nickel hydroxide powder becomes 0.35 mmol/L or less.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: June 9, 2020
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Kazuaki Okato, Tomomichi Nihei, Hideo Sasaoka
  • Patent number: 10676612
    Abstract: A polycarbonate resin composition capable of suppressing the deterioration of the weather resistance of the infrared shielding material fine particles, including: a composite tungsten oxide fine particle (A), a weather resistance improver (B), and a polycarbonate resin (C), wherein (A) is expressed by a general formula MxWOy, and (B) is any one of those containing a phosphite compound (B1), or containing the phosphite compound and one or more kinds selected from a hindered phenol-based stabilizer, phosphoric acid-based stabilizer and sulfur-based stabilizer (B2), or containing a hindered phenol-based stabilizer and one or more kinds selected from a phosphoric acid-based stabilizer and sulfur-based stabilizer (B3), and an addition amount of (B) is 0.1 parts by weight or more and 20 parts by weight or less, based on 1 parts by weight of (A), and provides a heat ray shielding molded body and a heat ray shielding lamination body produced using the composition.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: June 9, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroshi Kobayashi, Kenichi Fujita
  • Patent number: 10675680
    Abstract: There is provided an aggregate of metal fine particles, a metal fine particle dispersion liquid, a heat ray shielding film, a heat ray shielding glass, a heat ray shielding fine particle dispersion body and a heat ray shielding laminated transparent base material, having sufficient properties as a solar radiation shielding material which widely shields a heat ray component included in sunlight, and in which selectivity of a light absorption wavelength is controlled, wherein when a shape each metal fine particle is approximated to an ellipsoid, and mutually orthogonal semi-axial lengths are defined as a, b, c (a?b?c) respectively, an average, a standard deviation, and a distribution, etc., of the values of the aspect ratio a/c of the metal fine particles are in a predetermined range, and the metal is silver or a silver alloy.
    Type: Grant
    Filed: June 2, 2016
    Date of Patent: June 9, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Keisuke Machida, Kenji Adachi
  • Publication number: 20200172752
    Abstract: There is provided an anti-counterfeit ink composition, an anti-counterfeit ink, and an anti-counterfeit printed matter that transmits a visible light region, having absorption in an infrared region, and capable of judging authenticity of a printed matter, and containing composite tungsten oxide fine particles, the composite tungsten oxide fine particles having a hexagonal crystal structure, having a lattice constant such that a-axis is 7.3850 ? or more and 7.4186 ? or less, and c-axis is 7.5600 ? or more and 7.6240 ? or less, and having a particle size of the near-infrared absorbing material fine particles is 100 nm or less, and a method for producing the anti-counterfeit ink composition, the anti-counterfeit ink, the anti-counterfeit printed matter, and the anti-counterfeit ink composition.
    Type: Application
    Filed: June 19, 2018
    Publication date: June 4, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mika OKADA, Hirofumi TSUNEMATSU, Takeshi CHONAN
  • Publication number: 20200176773
    Abstract: A method for manufacturing a positive electrode active material includes: (a) preparing a fired powder of a lithium nickel composite oxide by mixing a nickel compound selected from a nickel hydroxide including nickel, and an element selected from other transition metal elements, elements of the second group and elements of the thirteenth group of the Periodic System, a nickel oxyhydroxide thereof, and a nickel oxide obtained by roasting thereof, and a lithium compound, and firing the mixture at a maximum temperature of 650° C. to 850° C. under oxygen atmosphere; and (b) preparing a lithium nickel composite oxide powder by mixing the fired powder with water to obtain a slurry, washing the fired powder with water at a temperature of 10° C. to 40° C., while controlling an electrical conductivity of a liquid portion of the slurry to 30 mS/cm to 60 mS/cm, then filtering and drying the resultant fired powder.
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Applicants: SUMITOMO METAL MINING CO., LTD., PANASONIC CORPORATION
    Inventors: Tomoko Iwanaga, Hideo Sasaoka, Satoshi Matsumoto, Yutaka Kawatate, Shinji Arimoto
  • Patent number: 10669646
    Abstract: Provided are nickel manganese composite hydroxide particles having a small and uniform particle size and having a double structure which enables to obtain a cathode active material having a hollow structure, and a manufacturing method thereof. When obtaining the nickel manganese composite hydroxide by a reaction crystallization, using an aqueous solution for nucleation, which includes at least a metallic compound that contains nickel, a metallic compound that contains manganese and an ammonium ion donor and controlling the pH value that is measured at a standard solution temperature of 25° C. is 10.5 to 12.0, nucleation is performed in an oxidizing atmosphere in which the oxygen concentration is greater than 1% by volume, and then nuclei are grown by switching the atmosphere from the oxidizing atmosphere to a mixed atmosphere of oxygen and inert gas in which the oxygen concentration is 1% by volume or less.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: June 2, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroyuki Toya, Kensaku Mori, Shin Imaizumi, Kenji Ikeuchi, Toshiyuki Osako
  • Publication number: 20200161653
    Abstract: Provided is a nickel-containing composite hydroxide that is a precursor of a positive-electrode active material with which a nonaqueous-electrolyte secondary battery having a low irreversible capacity and a high energy density can be configured. An aqueous alkaline aqueous solution and a complexing agent are added to an mixed aqueous solution including at least nickel and cobalt to regulate the pH (measured at a reference liquid temperature of 25° C.) of this mixed aqueous solution to 11.0 to 13.0, the ammonium concentration to 4 to 15 g/L, and the reaction temperature to 20° C. to 45° C. Using stirring blades having an inclination angle of 20° to 60° with respect to a horizontal plane, the mixture is stirred to conduct a crystallization reaction under such conditions that when the nickel-containing composite hydroxide to be obtained is roasted in air at 800° C. for 2 hours, the roasted composite hydroxide has a BET value of 12 to 50 m2/g.
    Type: Application
    Filed: January 22, 2020
    Publication date: May 21, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kazuomi RYOSHI, Kensaku MORI, Katsuya KASE, Yasutaka KAMATA
  • Publication number: 20200161644
    Abstract: Provided is a positive electrode active material that is capable of simultaneously improving the battery capacity, output characteristics and cycling characteristics of a secondary battery. When obtaining a transition metal-containing composite hydroxide that is a precursor to the positive electrode active material, by adjusting the pH value of a reaction aqueous solution to be within the range 12.0 to 14.0 and performing generation of nuclei (nucleation), and then adjusting the pH value of the reaction aqueous solution to be within the range 10.5 to 12.
    Type: Application
    Filed: December 10, 2019
    Publication date: May 21, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takahiro TOMA, Taira AIDA, Tetsufumi KOMUKAI, Yasutaka KAMATA
  • Patent number: 10654101
    Abstract: Provided is a silver-coated copper powder which can be utilized as an electrically conductive paste and an electromagnetic wave shield. A silver-coated copper powder has a dendritic shape having a linearly grown main stem and a plurality of branches separated from the main stem, the main stem and the branches are constituted as flat plate-shaped copper particles having a cross-sectional average thickness of from 0.02 ?m to 5.0 ?m to be determined by scanning electron microscopic (SEM) observation gather, the surface of the copper particles is coated with silver, the average particle diameter (D50) of the silver-coated copper powder 1 is from 1.0 ?m to 100 ?m, and the maximum height in the vertical direction with respect to the flat plate-shaped surface of the copper particles is 1/10 or less with respect to the maximum length in the horizontal direction of the flat plate-shaped surface of the copper particles.
    Type: Grant
    Filed: October 27, 2015
    Date of Patent: May 19, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventor: Hiroshi Okada
  • Publication number: 20200152972
    Abstract: A positive electrode active material for a non-aqueous electrolyte secondary battery achieves high output characteristics and battery capacity, and allows a high electrode density to be achieved in the case of using the material for a positive electrode of a battery; and a non-aqueous electrolyte secondary battery uses the positive electrode active material, thereby achieving a high output with a high capacity. Prepared is a nickel composite hydroxide including plate-shaped secondary particles aggregated with overlaps between plate surfaces of multiple plate-shaped primary particles, where shapes projected from directions perpendicular to the plate surfaces of the plate-shaped primary particles are any plane projection shape of spherical, elliptical, oblong, and massive shapes, and the secondary particles have an aspect ratio of 3 to 20, and a volume average particle size (Mv) of 4 ?m to 20 ?m measured by a laser diffraction scattering method.
    Type: Application
    Filed: January 10, 2020
    Publication date: May 14, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mitsuru YAMAUCHI, Kazuomi RYOSHI, Kensaku MORI
  • Patent number: 10649592
    Abstract: A laminated substrate is provided that includes a transparent base material, and a laminated body formed at least one surface of the transparent base material. The laminated body includes a blackened layer containing oxygen, copper, and nickel, and a copper layer. A ratio of the nickel is 11 mass % or more and 60 mass % or less, among the copper and the nickel contained in the blackened layer.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: May 12, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventor: Junichi Nagata
  • Patent number: 10651818
    Abstract: To provide a method of producing a lithium niobate (LN) substrate which allows treatment conditions regarding a temperature, a time, and the like to be easily managed and in which an in-plane distribution of a volume resistance value is very small, and also variations in volume resistivity are small among substrates machined from the same ingot. A method of producing an LN substrate by using an LN single crystal grown by the Czochralski process, in which a lithium niobate single crystal having a Fe concentration of 50 mass ppm or more and 2000 mass ppm or less in the single crystal and being in a form of an ingot is buried in an Al powder or a mixed powder of Al and Al2O3, and heat-treated at a temperature of 450° C. or more and less than 660° C., which is a melting point of aluminum, to produce a lithium niobate single crystal substrate having a volume resistivity controlled to be within a range of 1×108 ?·cm or more to 2×1012 ?·cm or less.
    Type: Grant
    Filed: June 8, 2016
    Date of Patent: May 12, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventor: Tomio Kajigaya
  • Publication number: 20200127287
    Abstract: Provided is a positive electrode active material that has high output characteristics and battery capacity when used for a positive electrode of a nonaqueous electrolyte secondary battery and can inhibit gelation of positive electrode mixture paste. A method for producing the positive electrode active material is also provided. A positive electrode active material for a nonaqueous electrolyte secondary battery contains a lithium-nickel-cobalt-manganese composite oxide represented by General Formula (1): Lii+sNixCoyMnzBLM1uO2+? and having a hexagonal layered crystal structure. The lithium-nickel-cobalt-manganese composite oxide contains a secondary particle formed of a plurality of flocculated primary particles and a boron compound containing lithium present at least on part of surfaces of the primary particles. A water-soluble Li amount present on the surfaces of the primary particles is up to 0.1% by mass relative to the entire amount of the positive electrode active material.
    Type: Application
    Filed: September 13, 2017
    Publication date: April 23, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mitsuru Yamauchi, Tetsufumi Komukai
  • Patent number: 10626481
    Abstract: There is provided a method capable of effectively reducing the amount of acid used in a leaching step and the amount of a neutralizer used in a final neutralization step while nickel yield in a hydrometallurgical process for nickel oxide ore is not reduced. A method for pre-treating ore slurry according to the present invention is a method for pre-treating ore slurry to be provided to a leaching treatment in a hydrometallurgical process for nickel oxide ore, the method including: a first separation step for separating ore slurry into a coarse particle fraction and a fine particle fraction; a second separation step for separating the coarse particle fraction separated in the first separation step into a heavy specific gravity fraction and a light specific gravity fraction; and a vibration sieving step for separating, by a vibration sieve, the light specific gravity fraction.
    Type: Grant
    Filed: February 8, 2016
    Date of Patent: April 21, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hirotaka Higuchi, Masaki Imamura
  • Patent number: 10629891
    Abstract: A non-aqueous electrolyte secondary battery is provided that has both good safety and durability characteristics while at the same time has high charge/discharge capacity. The cathode active material for a non-aqueous electrolyte secondary battery of the present invention is a lithium nickel composite oxide to which at least two or more kinds of metal elements including aluminum are added, and comprises secondary particles that are composed of fine secondary particles having an average particle size of 2 ?m to 4 ?m, and rough secondary particles having an average particle size of 6 ?m to 15 ?m, with an overall average particle size of 5 ?m to 15 ?m; where the aluminum content of fine secondary particles (metal mole ratio: SA) is greater than the aluminum content of rough secondary particles (metal mole ratio: LA), and preferably the aluminum concentration ratio (SA/LA) is within the range 1.2 to 2.6.
    Type: Grant
    Filed: February 6, 2018
    Date of Patent: April 21, 2020
    Assignees: SUMITOMO METAL MINING CO., LTD., Toyota Jidosha Kabushiki Kaisha
    Inventors: Syuhei Oda, Hiroyuki Toya, Katsuya Kase, Yutaka Oyama
  • Patent number: 10626480
    Abstract: In a method for producing a metal or alloy by forming pellets from an oxide ore, a method for smelting an oxide ore, wherein a high-quality metal can be produced. Provided is a method for smelting an oxide ore to produce a metal or alloy by heating for reducing a mixture containing an oxide ore and a carbonaceous reducing agent, wherein the carbonaceous reducing agent is composed of particles (reducing agent particles), the number of reducing agent particles which are contained in the carbonaceous reducing agent and have a maximum particle length of 25 ?m or less is 2% or more and 25% or less of the total number of reducing agent particles contained in the carbonaceous reducing agent, and the average maximum particle length of reducing agent particles having a maximum particle length greater than 25 ?m is 30 ?m or more and 80 ?m or less.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: April 21, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takashi Iseki, Yukihiro Goda, Jun-ichi Kobayashi, Shuji Okada