Patents Assigned to Sumitomo Metal Mining Co., Ltd.
  • Patent number: 10829385
    Abstract: Provided are a positive electrode active material for nonagueous secondary batteries, the material having a narrow particle-size distribution and a monodisperse property and being capable of increasing a battery capacity; an industrial production method thereof; and a nonaqueous secondary battery using the positive electrode active material and having excellent electrical characteristics. The positive electrode active material is represented by a general formula: Li1+uNixCoyMnzMtO2+? (wherein, 0.05?u?0.95, x+y+z+t=1, 0?x?0.5, 0?y?0.5, 0.5?z<0.8, 0?t?0.1, and M is an additive element and at least one element selected from Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, and W), has an average particle diameter of 3 to 12 um, and has [(d90?d10)/average particle diameter], an index indicating a scale of particle-size distribution, of 0.60 or less.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: November 10, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Satoshi Matsumoto, Shuhei Oda, Katsuya Inoue, Hiroyuki Toya
  • Patent number: 10823891
    Abstract: An infrared-absorbing material is provided, the infrared-absorbing material including at least one kind of transition metal; and at least one kind of element selected from B, C, N, O, etc., as a ligand of the transition metal, wherein at a bottom part of a conduction band, a bottom band of the conduction band is formed, the bottom band of the conduction band being a band occupied by d orbitals of the transition metal or a band in which the d orbitals of the transition metal and p orbitals of the ligand are hybridized, at a top part of a valence band, a top band of the valence band is formed, the top band of the valence band being a band occupied by the p orbitals of the ligand or a band in which the p orbitals of the ligand and the d orbitals of the transition metal are hybridized, in two wavenumber directions or less, which are highly symmetric points in a Brillouin zone, the bottom band of the conduction band and the top band of the valence band are close to each other by less than 3.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: November 3, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Keisuke Machida, Kenji Adachi, Satoshi Yoshio
  • Publication number: 20200338641
    Abstract: Provided is a production method for maintaining the quality while keeping a high operating rate of the reaction by continuously feeding a solution, seed crystals, and hydrogen gas into a reactor to produce nickel powder, and continuously discharging the resulting powder. The method for producing nickel powder comprises feeding a nickel ammine sulfate complex solution and seed crystals into a reactor, and feeding hydrogen gas into the reactor to subject a nickel complex ion in the nickel ammine sulfate complex solution to a reduction treatment and to thereby produce nickel powder, wherein, in the reduction treatment, while the nickel ammine sulfate complex solution is being continuously fed into the reactor, a temperature inside the reactor is controlled within the range of 150 to 185° C. and the feed rate of hydrogen gas is controlled to maintain an inner pressure of the reactor in the range of 2.5 to 3.5 MPa.
    Type: Application
    Filed: March 3, 2017
    Publication date: October 29, 2020
    Applicant: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yoshitomo OZAKI, Shin-ichi HEGURI, Kazuyuki TAKAISHI, Ryo-ma YAMAGUMA
  • Publication number: 20200343547
    Abstract: Provided is a positive electrode active material for non-aqueous electrolyte secondary batteries for making high capacity and high output compatible, non-aqueous electrolyte secondary batteries, having the positive electrode active material adopted thereto, and a production method for a positive electrode active material in which the positive electrode active material can be easily produced in an industrial scale. A positive electrode active material for non-aqueous electrolyte secondary batteries, contains: primary particles of a lithium nickel composite oxide represented by at least General Formula: LizNi1-x-yCoxMyO2 (0.95?z?1.03, 0<x?0.20, 0<y?0.10, x+y?0.20, and M is at least one type of element selected from Mg, Al, Ca, Ti, V, Cr, Mn, Nb, Zr, and Mo); and secondary particles configured by flocculating the primary particles, wherein an LiAl compound and an LiW compound are provided on surfaces of the primary particles.
    Type: Application
    Filed: July 31, 2018
    Publication date: October 29, 2020
    Applicants: SUMITOMO METAL MINING CO., LTD., SUMITOMO METAL MINING CO., LTD.
    Inventors: Jun Yokoyama, Kazuomi Ryoshi
  • Patent number: 10818921
    Abstract: Disclosed are: nickel complex hydroxide particles that have small and uniform particle diameters; and a method by which the nickel complex hydroxide particles can be produced. Specifically disclosed is a method for producing a nickel complex hydroxide by a crystallization reaction, which comprises: a nucleation step in which nucleation is carried out, while controlling an aqueous solution for nucleation containing an ammonium ion supplying material and a metal compound that contains nickel to have a pH of 12.0-13.4 at a liquid temperature of 25° C.; and a particle growth step in which nuclei are grown, while controlling an aqueous solution for particle growth containing the nuclei, which have been formed in the nucleation step, to have a pH of 10.5-12.0 at a liquid temperature of 25° C. In this connection, the pH in the particle growth step is controlled to be less than the pH in the nucleation step.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: October 27, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mori Kensaku, Shin Imaizumi, Rei Kokado
  • Publication number: 20200335781
    Abstract: The present invention provides a lithium-nickel-manganese-cobalt composite oxide in which the reactivity between a lithium raw material and a metal composite hydroxide is improved so that a high low-temperature output characteristic can be achieved, a method for manufacturing the composite oxide, and a positive electrode active material and the like without causing a problem of gelation during the paste preparation. A positive electrode active material for non-aqueous electrolyte secondary batteries, including a lithium-metal composite oxide powder including a secondary particle configured by aggregating primary particles containing lithium, nickel, manganese, and cobalt, or a lithium-metal composite oxide powder including both the primary particles and the secondary particle. The secondary particle has a solid structure inside as a main inside structure, the slurry pH is 11.5 or less, the soluble lithium content rate is 0.5 [% by mass] or less, and the specific surface area is 1.0 to 2.0 [m2/g].
    Type: Application
    Filed: July 31, 2018
    Publication date: October 22, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hiroko Oshita, Kazuomi Ryoshi, Taira Aida, Koji Yamaji, Jiro Okada
  • Publication number: 20200331238
    Abstract: A solar radiation shielding laminated structure, having high visible light transmission property and solar radiation shielding property, low haze value, and high environmental stability with inexpensive production cost, using solar radiation shielding fine particles having high visible light transmission property and excellent solar shielding property and weather resistance, and provides a solar radiation shielding laminated structure in which an interlayer is sandwiched between two laminated sheets; the interlayer having, as an intermediate film, one or more kinds selected from a resin sheet containing solar radiation shielding fine particles and a resin film containing solar radiation shielding fine particles, the laminated sheets being selected from a sheet-glass not containing solar radiation shielding fine particles and a resin board not containing solar radiation shielding fine particles; wherein the solar radiation shielding fine particles are solar radiation shielding fine particles containing calcium
    Type: Application
    Filed: September 14, 2018
    Publication date: October 22, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kenji ADACHI, Satoshi YOSHIO
  • Patent number: 10797316
    Abstract: A coated nickel hydroxide powder that has improved dispersibility in a paste to inhibit agglomeration and can be densely packed in a three-dimensional metal porous body in the preparation of a positive electrode for alkaline secondary battery includes nickel hydroxide particles and a coating layer made of a cobalt compound and formed on a surface of the nickel hydroxide particles, wherein when 10 mL of water is added to 10 g of the coated nickel hydroxide powder to prepare a suspension, a total amount of eluted ions except for oxonium ions, hydroxide ions, and carbonate ions in the suspension is 6.5 mmol/L or less. The coated nickel hydroxide powder obtained through a crystallization step, a coating step, and a washing step is dried in a drying step in a decarbonated atmosphere whose partial pressure of a carbon-containing gas is 15 Pa or less.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: October 6, 2020
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Kazuaki Okato, Tomomichi Nihei, Hideo Sasaoka
  • Patent number: 10797302
    Abstract: Provided is a method for producing the positive electrode active material for nonaqueous electrolyte secondary batteries, including a first step of mixing a Li-metal composite oxide powder which is represented by the general formula: LizNi1-x-yCoxMyO2 (where 0?x?0.35, 0?y?0.35, and 0.97?z?1.30 are satisfied, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) and constituted by primary particles and secondary particles, to an alkaline solution with a W compound dissolved therein, and immersing a resulting mixture, followed by solid-liquid separation, to obtain a W mixture with W uniformly dispersed on the surface of the primary particles of the composite oxide, and a second step of heat-treating the W mixture to thereby form a compound containing W and Li on the surface of the primary particles of the composite oxide powder.
    Type: Grant
    Filed: April 15, 2016
    Date of Patent: October 6, 2020
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yuki Furuichi, Tetsufumi Komukai, Hiroyuki Toya
  • Patent number: 10795065
    Abstract: A solar-radiation-shielding material for vehicle windows reduces the visible light transmittance, and reduces the value of solar radiation transmittance/visible light transmittance. The visible light transmittance of the solar-radiation-shielding material is in the range of 5%. The transmission color of the solar-radiation-shielding material satisfies the Expression 2: ?14<a*<2, and ?8<b*<2.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: October 6, 2020
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventor: Kenichi Fujita
  • Publication number: 20200308369
    Abstract: A solar radiation shielding fine particle dispersion body containing a thermoplastic resin, solar radiation shielding fine particles, a solar radiation shielding fine particle-containing masterbatch, a solar radiation shielding resin formed body formed into a predetermined shape using the same, and a solar radiation shielding resin laminate including the solar radiation shielding resin formed body stacked on another transparent formed body.
    Type: Application
    Filed: September 14, 2018
    Publication date: October 1, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kenji ADACHI, Satoshi YOSHIO
  • Publication number: 20200307295
    Abstract: An LTHC layer having the visible light transmission property, having sufficient infrared absorption property, capable of improving transfer accuracy of the organic electroluminescence device by irradiation with a laser beam, and further enabling application in a wide variety of fields including electronics, medicine, agriculture, machine, etc. A donor sheet using the LTHC layer including infrared absorbing particles and a binder component, wherein the infrared absorbing particles are composite tungsten oxide fine particles including a hexagonal crystal structure, a lattice constant of the composite tungsten oxide fine particles is such that the a-axis is 7.3850 ? or more and 7.4186 ? or less, and the c-axis is 7.5600 ? or more and 7.6240 ? or less, and a particle size of the composite tungsten oxide fine particles is 100 nm or less, and the solar radiation transmittance is 45% or less.
    Type: Application
    Filed: September 14, 2018
    Publication date: October 1, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Hirofumi TSUNEMATSU, Takeshi CHONAN
  • Publication number: 20200313180
    Abstract: The positive electrode active material is for a non-aqueous electrolyte secondary battery, suppressing deterioration of battery characteristics due to exposure to the atmosphere and having excellent battery capacity. A positive electrode active material for a non-aqueous electrolyte secondary battery includes a lithium-nickel composite oxide represented by general formula (1): LiaNi1-x-yCoxMyO2+? (in which 0.05?x?0.35, 0?y?0.10, 0.95?a?1.10, 0?a?0.2, and M represents at least one element selected from Mn, V, Mg, Mo, Nb, Ti, W, and Al) and Li3BO3. At least a part of a surface of the lithium-nickel composite oxide is coated with Li3BO3. The content of boron in the positive electrode active material is 0.001% by mass or more and 0.2% by mass or less with respect to the entire positive electrode active material.
    Type: Application
    Filed: August 23, 2018
    Publication date: October 1, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kazuomi Ryoshi, Motoaki Saruwatari, Hiroko Oshita, Yoshihiro Otsuka
  • Patent number: 10790509
    Abstract: A positive-electrode active material precursor for a nonaqueous electrolyte secondary battery is provided that includes a nickel-cobalt-manganese carbonate composite represented by general formula NixCoyMnzMtCO3 (where x+y+z+t=1, 0.05?x?0.3, 0.1?y?0.4, 0.55?z?0.8, 0?t?0.1, and M denotes at least one additional element selected from a group consisting of Mg, Ca, Al, Ti, V, Cr, Zr, Nb, Mo, and W) and a hydrogen-containing functional group, wherein H/Me representing the ratio of the amount of hydrogen to the amount of metal components Me included in the positive-electrode active material precursor is greater than or equal to 1.60.
    Type: Grant
    Filed: January 5, 2017
    Date of Patent: September 29, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kikoo Uekusa, Satoshi Matsumoto, Masao Wakabayashi
  • Patent number: 10787581
    Abstract: Heat ray shielding particles are provided that are composite tungsten oxide particles having a hexagonal crystal structure represented by a general formula LixMyWOz, wherein the element M in the general formula is one or more kinds of elements selected from alkaline earth metals and alkali metals other than lithium, 0.25?x?0.80, 0.10?y?0.50, and 2.20?z?3.00.
    Type: Grant
    Filed: October 13, 2015
    Date of Patent: September 29, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Keisuke Machida, Mika Okada, Kenichi Fujita
  • Publication number: 20200299825
    Abstract: A cesium tungsten oxide film has high heat ray shielding performance and a radio wave transmissivity, and a method for manufacturing a cesium tungsten oxide film capable of manufacturing such film by a dry method. A cesium tungsten oxide film including cesium, tungsten and oxygen as main components, wherein, an atomic ratio of the cesium and the tungsten is Cs/W, which is 0.1 or more and 0.5 or less, and the cesium tungsten oxide film is having a hexagonal crystal structure. A method for manufacturing a cesium tungsten oxide film including cesium, tungsten and oxygen as main components, including: a film deposition process using a cesium tungsten oxide target; and a heat treatment process for heat-treating the film at a temperature of 400° C. or more and less than 1000° C., wherein either the film deposition process or the heat treatment process is performed in an atmosphere containing oxygen.
    Type: Application
    Filed: July 20, 2018
    Publication date: September 24, 2020
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Keiichi SATO, Isao ANDO
  • Patent number: 10781531
    Abstract: A method for producing a nickel-containing hydroxide is provided that includes a nucleation step of generating nuclei of nickel-containing hydroxide particles by neutralization crystallization in an aqueous solution accommodated in an agitation tank. In the nucleation step, a volume fraction of a highly supersaturated region in the aqueous solution where the molar concentration of the nickel-containing hydroxide dissolved in the aqueous solution is greater than or equal to 5.0 mol/m3 is less than 0.100% of the aqueous solution.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: September 22, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Shuhei Nakakura, Kazuhiko Tsuchioka, Koichiro Maki, Motoaki Saruwatari, Kazuomi Ryoshi, Yoshihiko Nakao, Masafumi Yoshida
  • Patent number: 10784500
    Abstract: In one aspect, a method for producing a positive electrode active material for a nonaqueous electrolyte secondary battery, includes mixing first lithium nickel composite oxide particles containing lithium tungstate and second lithium nickel composite oxide particles not containing lithium tungstate. The first lithium nickel composite oxide particles have a composition represented by Liz1Ni1-x1-y1Cox1M1y1O2, and include a core material containing secondary particles each corresponding to an aggregation of a plurality of primary particles, and the lithium tungstate existing on at least a part of a surface of the primary particles on a surface of and inside the first lithium nickel composite oxide particles. The second lithium nickel composite oxide particles have a composition represented by Liz2Ni1-x2-y2Cox2M2y2O2, and include secondary particles each corresponding to an aggregation of a plurality of primary particles.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: September 22, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Kentaro Kondo, Jun Yokoyama, Yuki Furuichi
  • Patent number: 10784507
    Abstract: Provided is a method for producing a positive electrode active material for nonaqueous electrolyte secondary batteries, the method including: a mixing step of obtaining a W-containing mixture of Li-metal composite oxide particles represented by the formula: LizNi1-x-yCoxMyO2 and composed of primary particles and secondary particles formed by aggregation of the primary particles, 2 mass % or more of water with respect to the oxide particles, and a W compound or a W compound and a Li compound, the W-containing mixture having a molar ratio of the total amount of Li contained in the water and the solid W compound, or the W compound and the Li compound of 1.5 or more and less than 3.0 with respect to the amount of W contained therein; and a heat treatment step of heating the W-containing mixture to form lithium tungstate on the surface of the primary particles.
    Type: Grant
    Filed: November 27, 2015
    Date of Patent: September 22, 2020
    Assignee: Sumitomo Metal Mining Co., Ltd.
    Inventors: Yuki Furuichi, Tetsufumi Komukai
  • Patent number: 10777813
    Abstract: A positive electrode active material for non-aqueous electrolyte secondary battery with improved cycle characteristics and high temperature storage characteristics, without impairing an advantage of high capacity which lithium nickel composite oxide inherently possesses. The positive electrode active material for non-aqueous electrolyte secondary battery includes lithium nickel composite oxide represented by a general formula (1): Li1+uNi1?x?y?zCoxMnyMgzO2 (However, u, x, y and z in the formula satisfies 0.015?u?0.030, 0.05?x?0.20, 0.01?y?0.10, 0.01?z?0.05, 0.10?x+y+z?0.25.), and wherein crystallite diameter is 100 nm to 130 nm. In addition, the positive electrode active material for non-aqueous electrolyte secondary battery is produced at least by an oxidation roasting step, a mixing step, and a calcining step.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: September 15, 2020
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Mitsuru Yamauchi, Ryozo Ushio