Patents Assigned to Sumitomo Osaka Cement Co., Ltd.
  • Patent number: 11187959
    Abstract: To provide a highly-reliable low-cost small optical modulator in which temperature drift is suppressed and an optical transmission device using the same. An optical modulator including an optical waveguide substrate 1 on which an optical waveguide is formed, a signal electrode which is provided on the optical waveguide substrate and applies an electric field to the optical waveguide, a termination substrate 3 provided with a termination resistor that terminates the signal electrode, and a housing 6 in which the optical waveguide substrate and the termination substrate are mounted, in which, in order to suppress conduction of heat generated from the termination resistor to the optical waveguide substrate through the housing, a groove 8 is formed in the housing 6 between the termination substrate 3 and the optical waveguide substrate 1.
    Type: Grant
    Filed: June 25, 2020
    Date of Patent: November 30, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventor: Toru Sugamata
  • Patent number: 11189826
    Abstract: An electrode material for a lithium ion secondary battery of the present invention includes an electrode active material represented by LiFexMn1-w-x-yMgyAwPO4 and a carbonaceous film coating a surface of the electrode active material, a particle diameter D10 of secondary particles is 0.5 ?m or more, a particle diameter D90 of the secondary particles is 25 ?m or less, and a ratio (O/I) of an average value of thicknesses I of the carbonaceous film on the surfaces of the primary particles in a range of 0.3 ?m or less from a center of the secondary particle at 300 measurement points to an average value of thicknesses O of the carbonaceous film on the surfaces of the primary particles in a range of 0.3 ?m or less from an outermost surface of the secondary particle at 300 measurement points is 0.85 or more and less than 1.00.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: November 30, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Satoru Oshitari, Masataka Oyama, Kouji Oono
  • Patent number: 11171321
    Abstract: An electrode material having an electrode active material and a pyrolytic carbonaceous electron-conducting film that coats a surface of the electrode active material, in which an amount of a surface acid of the electrode material, which is determined by a back-titration method using tetrabutylammonium hydroxide, is 1 ?mol/m2 or more and 5 ?mol/m2 or less per surface area of the electrode material.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: November 9, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Kouji Oono, Takao Kitagawa, Tetsuya Nakabeppu
  • Patent number: 11168000
    Abstract: Metal oxide powder formed of metal oxide particles, in which the metal oxide powder has first metal oxide particles having at least one protrusion portion and second metal oxide particles, the first metal oxide particles have an average primary particle diameter of 100 nm or more and 1,000 nm or less, the second metal oxide particles have an average primary particle diameter of less than 100 nm, and a fraction of a total mass of particles having a primary particle diameter of less than 100 nm in a total mass of the metal oxide powder is 0.3% by mass or more and 10% by mass or less.
    Type: Grant
    Filed: December 27, 2016
    Date of Patent: November 9, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventor: Teppei Yakubo
  • Patent number: 11163118
    Abstract: An optical modulation device includes: a substrate which extends in one direction; an optical waveguide provided on the substrate in a longitudinal direction of the substrate; a half-wave plate; and a combining element which faces an end portion of the substrate and combines two types of linearly polarized light, which have vibration planes orthogonal to each other, to generate composite light, in which the optical waveguide modulates the linearly polarized light which propagates through an inside of the optical waveguide to generate first polarized light and second polarized light, which are linearly polarized light, the half-wave plate is provided at a position to which the second polarized light enters, the combining element includes a transparent base body, a first optical film provided on a first surface of the transparent base body, and a second optical film provided on a second surface which faces the first surface of the transparent base body, the first optical film transmits one of the first polarize
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: November 2, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Makoto Shimada, Tokutaka Hara
  • Patent number: 11158852
    Abstract: A positive electrode material for lithium-ion secondary batteries, wherein the positive electrode material includes a carbon-coated positive electrode active material which comprises primary particles, secondary particles, and a carbon film, wherein the primary particles and the secondary particles are coated with the carbon film, wherein the primary particles consists of a positive electrode active material in which a strain of the positive electrode active material, which is calculated by X-ray diffraction measurement, is 0.01% or higher and 0.1% or lower, and a ratio (B/A) of a crystallite diameter B (nm) of the positive electrode active material to an average primary particle diameter A (nm) of the carbon-coated positive electrode active material is 0.9 or higher and 1.5 or lower, wherein the particle diameter A is calculated from a specific surface area of the carbon-coated positive electrode active material, wherein the specific surface area is obtained using a BET method.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: October 26, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Tsutomu Nozoe, Toyomasa Nakano
  • Patent number: 11156857
    Abstract: An initial change and a secular change in an optical characteristic and a high frequency characteristic in a case where an optical modulator is mounted in a package of an optical transmission apparatus are suppressed while improving a space utilization rate in the package of the optical transmission apparatus. An optical modulator that is electrically connected to an electric circuit configured on a circuit board, includes a package that houses an optical modulation element, in which the package has, on a bottom surface facing the circuit board, a plurality of first protruding bodies protruding from the bottom surface.
    Type: Grant
    Filed: January 11, 2019
    Date of Patent: October 26, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Norikazu Miyazaki, Toru Sugamata
  • Patent number: 11141363
    Abstract: In an ultraviolet-shielding particle coated with silicon oxide of the present invention, a surface of the ultraviolet-shielding particle is coated with a silicon oxide coat, at least one functional group selected from the group consisting of an alkyl group, an alkenyl group, and a cycloalkyl group is present on a surface of the silicon oxide coat, and a content of the functional group is 0.0001% by mass or more and 0.30% by mass or less.
    Type: Grant
    Filed: January 5, 2018
    Date of Patent: October 12, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Tetsuro Itagaki, Hirokazu Matsushita, Norito Morishita
  • Publication number: 20210302674
    Abstract: An optical waveguide device includes: a substrate having an electro-optic effect, an optical waveguide formed on the substrate, a light-receiving element disposed on the substrate and monitoring a light wave propagating through the optical waveguide or a light wave that is radiated from the optical waveguide; and a monitoring optical waveguide extending from the optical waveguide to the light-receiving element, in which the monitoring optical waveguide has a U-turn waveguide with respect to an output direction of the optical waveguide, and the light-receiving element is disposed at a part of the monitoring optical waveguide after the U-turn waveguide.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 30, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Norikazu MIYAZAKI, Yu NAKATA
  • Publication number: 20210302765
    Abstract: An optical waveguide device includes a substrate on which an optical waveguide is formed, and a reinforcing block disposed on the substrate, along an end surface of the substrate on which an input portion or an output portion of the optical waveguide is disposed, in which an optical component that is joined to both the end surface of the substrate and an end surface of the reinforcing block is provided, a material used for a joining surface of the optical component and a material used for the substrate or the reinforcing block have at least different linear expansion coefficients of a direction parallel to the joining surface, and an area of the joining surface is set to be smaller than a maximum value of a total of areas of cross sections of the substrate and the reinforcing block parallel to the joining surface.
    Type: Application
    Filed: March 25, 2021
    Publication date: September 30, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Hideki ICHIMEI, Kei KATO, Norikazu MIYAZAKI
  • Publication number: 20210302766
    Abstract: An optical modulator includes a substrate on which an optical waveguide and a modulation electrode that modulates a light wave propagating through the optical waveguide are formed, and a case housing the substrate, the optical waveguide includes at least an optical branching part that branches one light wave into two light waves or an optical combining part that combines two light waves into one light wave, the modulation electrode has a signal electrode and a ground electrode, and a part of the signal electrode is disposed so as to cross the optical branching part or the optical combining part, and the optical modulator is provided with a suppressing unit that suppresses changes in an intensity ratio of the light waves branched at the optical branching part or an intensity ratio of the light waves combined at the optical combining part, by the signal electrode.
    Type: Application
    Filed: February 8, 2021
    Publication date: September 30, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Takeshi SAKAI, Toshio KATAOKA
  • Publication number: 20210302679
    Abstract: An optical waveguide device includes a substrate on which an optical waveguide is formed, and a reinforcing block disposed on the substrate, along an end surface of the substrate on which an input portion or an output portion of the optical waveguide is disposed, in which an optical component that is joined to both the end surface of the substrate and an end surface of the reinforcing block is provided, a material used for a joining surface of the optical component and a material used for the substrate or the reinforcing block have at least different linear expansion coefficients of a direction parallel to the joining surface, and an area of a joining portion of the optical component is set to be smaller than an area of the end surfaces including joining portions of the substrate and the reinforcing block.
    Type: Application
    Filed: March 26, 2021
    Publication date: September 30, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Kei KATO, Hideki ICHIMEI, Norikazu MIYAZAKI
  • Publication number: 20210305571
    Abstract: A positive electrode material for a lithium ion secondary battery containing carbon, in which, when a peak of the carbon that is measured by Raman scattering and is present at 2200 to 3400 cm?1 is peak-separated into peaks including five types of Voigt functions of a peak 1 having a peak top present at 2200 to 2380 cm?1, a peak 2 having a peak top present at 2400 to 2550 cm?1, a peak 3 having a peak top present at 2600 to 2750 cm?1, a peak 4 having a peak top present at 2850 to 2950 cm?1, and a peak 5 having a peak top present at 3100 to 3250 cm?1, an average of proportions of Gaussian functions in the peak 3 and the peak 4 is 90% or more and less than 100%.
    Type: Application
    Filed: September 24, 2020
    Publication date: September 30, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Tsutomu NOZOE, Toyomasa NAKANO
  • Publication number: 20210302764
    Abstract: An optical waveguide device including a rib-type optical waveguide 2 formed of a material having an electro-optic effect, and a reinforcing substrate 1 that supports the rib-type optical waveguide, one end of the rib-type optical waveguide 2 has a tapered portion 20, structures 4 are provided that are disposed apart from the tapered portion so as to sandwich the tapered portion and are disposed on the reinforcing substrate 1, an upper substrate is disposed above the tapered portion and the structures, and an adhesive layer is disposed in a space sandwiched between the upper substrate and the structures.
    Type: Application
    Filed: March 19, 2021
    Publication date: September 30, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Shingo TAKANO, Yu KATAOKA, Shoutarou HIRATA
  • Publication number: 20210305619
    Abstract: The lithium ion polymer battery includes: a positive electrode that includes at least a positive electrode material which is capable of desorbing lithium ions when the battery is charged; and a negative electrode which includes a current collector and an ionic conductive polymer layer which is provided on the current collector.
    Type: Application
    Filed: September 25, 2020
    Publication date: September 30, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventor: Kouji OONO
  • Publication number: 20210305618
    Abstract: The positive electrode material for lithium ion secondary batteries includes a mixture including a positive electrode active material in which a length of a longest side of a primary particle is 1 nm or more and 1000 nm or less and a NASICON-type compound in which a length of a longest side of a primary particle is 1 nm or more and 1000 nm or less.
    Type: Application
    Filed: September 25, 2020
    Publication date: September 30, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Satoru OSHITARI, Kouji OONO, Tsutomu NOZOE
  • Publication number: 20210296649
    Abstract: A positive electrode material for a lithium ion secondary battery includes an olivine-type phosphate-based compound represented by General Formula LixAyDzPO4 and carbon, and, in transmission electron microscopic observation of a cross section of a secondary particle that is an agglomerate of primary particles of the olivine-type phosphate-based compound, a 300-point average value of filling rates of the carbon that fills insides of voids having a diameter of 5 nm or larger that are formed by the primary particles is 30 to 70%. A is any one of Co, Mn, Ni, Fe, Cu, and Cr, D is any one of Mg, Ca, Sr, Ba, Ti, Zn, B, Al, Ga, In, Si, Ge, Sc, and Y, and x, y, and z satisfy 0.9<x<1.1, 0<y?1.0, 0?z<1.0, and 0.9<y+z<1.1.
    Type: Application
    Filed: September 24, 2020
    Publication date: September 23, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Satoru OSHITARI, Kouji OONO, Tsutomu NOZOE
  • Publication number: 20210294177
    Abstract: In an optical waveguide element which uses a rib type optical waveguide, light propagating in the rib type optical waveguide is monitored stably and accurately. The optical waveguide element includes a rib type optical waveguide provided on a optical waveguide substrate and configured of a convex portion protruding in a thickness direction of the optical waveguide substrate and extending in a plane direction of the optical waveguide substrate, and a light receiving element configured of a light receiving part formed on a light receiving element substrate disposed on the rib type optical waveguide and configured to receive at least a part of light propagating through the rib type optical waveguide, and the light receiving element substrate is supported by at least one first convex portion having the same height as that of the rib type optical waveguide provided on the optical waveguide substrate.
    Type: Application
    Filed: March 15, 2021
    Publication date: September 23, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Yu NAKATA, Norikazu MIYAZAKI
  • Publication number: 20210268616
    Abstract: An electrostatic chuck device (1) including: an electrostatic chuck member (2) formed of ceramics; a temperature control base member (3) formed of metal; and a power supply terminal (16) which is inserted in the temperature control base member (3) and applies a voltage to an electrode for electrostatic attraction (13) which is provided on the electrostatic chuck member (2), the electrode for electrostatic attraction (13) and the power supply terminal (16) are connected with each other via a conductive adhesive layer (17), the conductive adhesive layer (17) contains a carbon fiber and a resin, and the carbon fiber has an aspect ratio of 100 or higher.
    Type: Application
    Filed: July 19, 2019
    Publication date: September 2, 2021
    Applicant: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventor: Takashi SATO
  • Patent number: 11107719
    Abstract: An electrostatic chuck device includes: a base having one principal surface which is a placing surface on which a plate-shaped sample is placed, wherein the base is made from a sintered compact of ceramic particles, which include silicon carbide particles and aluminum oxide particles, as a forming material; and an electrostatic attraction electrode which is provided on a surface of the base on the side opposite to the placing surface of the base, or in the interior of the base, in which the volume resistivity value of the sintered compact is 0.5×1015 ?cm or more in the entire range from 24° C. to 300° C., a graph which shows the relationship of the volume resistivity value of the sintered compact to a temperature at which the volume resistivity value of the sintered compact is measured has a maximum value in the range from 24° C. to 300° C., and the amount of metal impurities in the sintered compact other than aluminum and silicon in the sintered compact is 100 ppm or less.
    Type: Grant
    Filed: January 12, 2017
    Date of Patent: August 31, 2021
    Assignee: SUMITOMO OSAKA CEMENT CO., LTD.
    Inventors: Nobuhiro Hidaka, Hironori Kugimoto, Mamoru Kosakai