Patents Assigned to Sun Company, Inc.
  • Patent number: 5608054
    Abstract: Transition metal complexes of meso-haloalkylporphyrins, wherein the haloalkyl groups contain 2 to 8 carbon atoms have been found to be highly effective catalysts for oxidation of alkanes and for the decomposition of hydroperoxides.
    Type: Grant
    Filed: March 17, 1995
    Date of Patent: March 4, 1997
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Tilak Wijesekera, James E. Lyons, Paul E. Ellis, Jr., Manoj V. Bhinde
  • Patent number: 5599948
    Abstract: New chemical compounds, bis(pyrrol-2-yl)halocarbylmethanes, also known as meso-halocarbyl dipyrromethanes, are made by recting pyrrole in either of two reaction schemes. Once such scheme converts pyrrole through an intermediate, a halocarbyl carbonyl pyrrole, to a [2-(1-hydroxyl-1-hydro-1-halocarbyl)pyrrole], and then converts the latter to the desired halocarbyldipyrromethane; the last step in this scheme is a novel and useful method in itself. The other such sequence converts pyrrole, by reaction with a halocarbyl aldehyde, directly to the desired halocarbyl dipyrromethane.
    Type: Grant
    Filed: May 2, 1996
    Date of Patent: February 4, 1997
    Assignee: Sun Company, Inc.
    Inventor: Tilak Wijesekera
  • Patent number: 5571908
    Abstract: The invention comprises new compositions of matter, which are iron, manganese, cobalt or ruthenium complexes of porphyrins having hydrogen, haloalkyl or haloaryl groups in meso positions, two of the opposed meso atoms or groups being hydrogen or haloaryl, and two of the opposed meso atoms or groups being hydrogen or haloalkyl, but not all four of the meso atoms or groups being hydrogen. The invention also comprises new compositions of matter in which all four of the meso positions are substituted with haloalkyl groups and the beta positions are substituted with halogen atoms. A new method of synthesizing porphyrinogens is also provided.The novel compositions and others made according to the process of the invention are useful as hydrocarbon conversion catalysts; for example, for the oxidation of alkanes and the decomposition of hydroperoxides.
    Type: Grant
    Filed: December 29, 1993
    Date of Patent: November 5, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Tilak Wijesekera, James E. Lyons, Paul E. Ellis, Jr.
  • Patent number: 5550301
    Abstract: Organic hydroperoxides are decomposed by drying a reaction mixture containing the organic hydroperoxide and an organic solvent such that said dried reaction mixture comprises approximately 1 weight percent or less of water and contacting the dried reaction mixture with a metal organic ligand catalyst under hydroperoxide decomposition conditions. An organic co-solvent for the hydroperoxide may also be used. Particularly effective catalysts are cobalt acetylacetonates and ruthenium acetylacetonates and combinations thereof.
    Type: Grant
    Filed: March 3, 1995
    Date of Patent: August 27, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Manoj V. Bhinde, James E. Lyons, Paul E. Ellis, Jr.
  • Patent number: 5540833
    Abstract: New compositions of matter comprise a metal from the group consisting of platinum, rhodium and palladium, a metal from the first row of Group VIII of the Periodic Table and a nonacidic L-zeolite. A preferred composition is Pt--Ni/KL-zeolite. Such catalysts are prepared by coimpregnation of the zeolite with the metals. Methods of using the catalysts in reforming, aromatization or dehydrogenation are provided.
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: July 30, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Gustavo Larsen, Gary L. Haller, Daniel E. Resasco, Vincent A. Durante
  • Patent number: 5516964
    Abstract: An isomerization process is provided which process utilizes a sulfated solid catalyst comprising (1) oxide or hydroxide of Group III or Group IV element, e.g. zirconium, and (2) a first metal comprising a metal or combination of metals selected from the group consisting of platinum, palladium, nickel, platinum and rhenium, and platinum and tin. The sulfated support is calcined prior to incorporation of the first metal and subsequent to said incorporation. The catalyst may further comprise (3) a second metal selected from the group consisting of Group VIII elements, e.g. iron. One embodiment of the invention further comprises (4) a third metal selected from the group consisting of Group V, VI and VII elements, e.g. manganese. Said second and third metals are added prior to the first calcination.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: May 14, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Benjamin S. Umansky, Manoj V. Bhinde, Chao-Yang Hsu
  • Patent number: 5510558
    Abstract: Oxidative dehydrogenation of alkanes and alkylaromatic hydrocarbons is achieved by contact with an active carbon catalyst. In various aspects of the invention, the oxidative dehydrogenation is performed at a pressure above about 100 psia, and/or at a temperature in the range from about 500.degree. C. to about 800.degree. C., and/or the active carbon catalyst contains a metal, for example, molybdenum.
    Type: Grant
    Filed: December 29, 1993
    Date of Patent: April 23, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Benjamin S. Umansky, Kevin A. Boyer, Chao-Yang Hsu
  • Patent number: 5502211
    Abstract: New chemical compounds, bis(pyrrol-2-yl)halocarbylmethanes, also known as meso-halocarbyl dipyrromethanes, are made by recting pyrrole in either of two reaction schemes. Once such scheme converts pyrrole through an intermediate, a halocarbyl carbonyl pyrrole, to a 2-(1-hydroxyl-1-hydro-1-halocarbyl)pyrrole!, and then converts the latter to the desired halocarbyldipyrromethane; the last step in this scheme is a novel and useful method in itself. The other such sequence converts pyrrole, by reaction with a halocarbyl aldehyde, directly to the desired halocarbyl dipyrromethane.
    Type: Grant
    Filed: October 26, 1993
    Date of Patent: March 26, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventor: Tilak Wijesekera
  • Patent number: 5494569
    Abstract: A hydrocracking process is provided which process utilizes a sulfated solid catalyst comprising (1) oxide or hydroxide of Group III or Group IV element, e.g. zirconium, and (2) a first metal comprising a metal or combination of metals selected from the group consisting of platinum, palladium, nickel, platinum and rhenium, and platinum and tin. The catalyst may further comprise (3) a second metal selected from the group consisting of Group VIII elements, e.g. iron. One embodiment of the invention further comprises (4) a third metal selected from the group consisting of Group V, VI and VII elements, e.g. manganese.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: February 27, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Benjamin S. Umansky, Manoj V. Bhinde, Chao-Yang Hsu
  • Patent number: 5494571
    Abstract: A naphtha upgrading process is provided which process utilizes a sulfated solid catalyst comprising (1) oxide or hydroxide of Group III or Group IV element, e.g. zirconium, and (2) a first metal comprising a metal or combination of metals selected from the group consisting of platinum, palladium, nickel, platinum and rhenium, and platinum and tin. The sulfated support is calcined prior to incorporation of the first metal and subsequent to said incorporation. The catalyst may further comprise (3) a second metal selected from the group consisting of Group VIII elements, e.g. iron. One embodiment of the invention further comprises (4) a third metal selected from the group consisting of Group V, VI and VII elements, e.g. manganese. Said second and third metals are added prior to the first calcination.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: February 27, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Benjamin S. Umansky, Richard E. Mitchell, Chao-Yang Hsu, Manoj V. Bhinde, Chiu-Hsun Lin
  • Patent number: 5493067
    Abstract: Isoparaffins and olefins are alkylated by contact with a solid superacid such as sulfated zirconia optionally containing added metals, and containing added heteropolyacids (HPA's) or polyoxoanions (POA's). The presence of HPA's or POA's in the solid superacid catalyst results in higher yields of desired high-octane components in the product mixture than are obtained in the absence of HPA's or POA's.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: February 20, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Howard P. Angstadt, Elmer J. Hollstein, Chao-Yang Hsu
  • Patent number: 5491278
    Abstract: Isoparaffins and olefins are alkylated in the liquid phase by contact with a solid superacid such as sulfated zirconia containing heteropolyacids or polyoxoanions. High octane number blending components for motor fuel and other valuable products are obtained, with important advantages over processes using liquid acid catalysts, and over vapor phase alkylation with solid superacid catalysts.
    Type: Grant
    Filed: November 12, 1993
    Date of Patent: February 13, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Howard P. Angstadt, Elmer J. Hollstein, Chao-Yang Hsu
  • Patent number: 5489716
    Abstract: The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxygroup containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin.
    Type: Grant
    Filed: September 7, 1994
    Date of Patent: February 6, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Paul E. Ellis, Jr., James E. Lyons
  • Patent number: 5489722
    Abstract: Organic compounds are dehydrogenated by contact with a catalyst prepared by oxidizing and then sulfiding a composition comprising Group VIIIA (first or second row) catalytic metal on a nonacidic porous support, for example alumina, to produce compositions which have good dispersion of a catalytically active metal component and of sulfide species over the surface of the compositions and high activity as catalysts for the dehydrogenation of organic compounds. In one embodiment of the invention the catalyst used in the process of the invention has ratios of nickel, and/or sulfide species to peak areas of aluminum in the support, as determined by X-ray photoelectron spectroscopy (XPS), which improve their activity and stability for use as dehydrogenation catalysts.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: February 6, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Daniel E. Resasco, Bonita K. Marcus, Chen-Shi Huang, Vincent A. Durante
  • Patent number: 5480986
    Abstract: Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.
    Type: Grant
    Filed: July 30, 1993
    Date of Patent: January 2, 1996
    Assignee: Sun Company, Inc. (R&M)
    Inventors: James E. Lyons, Paul E. Ellis, Jr., Richard W. Wagner
  • Patent number: 5476981
    Abstract: Solid superacid catalyst, for example sulfated zirconia, is used in the oxidative dehydrogenation of saturated or partially saturated hydrocarbons, for example the conversion of isobutane to isobutylene in the presence of an oxygen-containing oxidizing agent at reaction conditions typically including temperatures from 500 to 1,000 degrees Fahrenheit, superatmospheric pressures, and oxygen/alkane molar ratios from 0.2 to 20. Performance of a metal-oxide or metal-hydroxide oxidative dehydrogenation catalyst may be enhanced by pretreating a solid superacid or other catalyst containing metal oxides or hydroxides at a carbonizing temperature with an organic material, for example an oxygen-containing organic material, to form a carbonaceous layer on the surface thereof prior to use of the catalyst in oxidative dehydrogenation.
    Type: Grant
    Filed: December 29, 1993
    Date of Patent: December 19, 1995
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Benjamin S. Umansky, Chao-Yang Hsu
  • Patent number: 5468710
    Abstract: Compositions of matter comprising sulfided nickel and nonacidic alumina, and having certain ratios of specific peak areas for nickel, for aluminum, for sulfide ion and/or for cesium, as determined by X-ray photoelectron spectroscopy, are useful as catalysts for dehydrogenation of organic compounds, and are superior as such catalysts to otherwise similar compositions not having such ratios.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: November 21, 1995
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Daniel E. Resasco, Bonita K. Marcus, Chen-Shi Huang, Vincent A. Durante
  • Patent number: 5462904
    Abstract: The process of the invention comprises oxidizing and then sulfiding materials comprising Group VIA or Group VIIIA (first or second row) catalytic metal on a nonacidic porous support, to produce compositions which have good dispersion of a catalytically active metal component and of sulfide species over the surface of the compositions and high activity as catalysts for the dehydrogenation of organic compounds.
    Type: Grant
    Filed: September 30, 1994
    Date of Patent: October 31, 1995
    Assignee: Sun Company, Inc. (R&M)
    Inventors: Daniel E. Resasco, Bonita K. Marcus, Chen-Shi Huang, Vincent A. Durante
  • Patent number: D377761
    Type: Grant
    Filed: April 3, 1995
    Date of Patent: February 4, 1997
    Assignee: Sun Company, Inc.
    Inventor: Gregory L. Cross
  • Patent number: D377913
    Type: Grant
    Filed: February 2, 1996
    Date of Patent: February 11, 1997
    Assignee: Sun Company, Inc.
    Inventor: Gregory L. Cross