Patents Assigned to Suss Microtec
  • Patent number: 9748135
    Abstract: A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
    Type: Grant
    Filed: August 18, 2015
    Date of Patent: August 29, 2017
    Assignees: INTERNATIONAL BUSINESS MACHINES CORPORATION, SUSS MICROTEC PHOTONIC SYSTEMS INC.
    Inventors: Yuri M. Brovman, Brian M. Erwin, Nicholas A. Polomoff, Jennifer D. Schuler, Matthew E. Souter, Christopher L. Tessler
  • Patent number: 9662684
    Abstract: The application describes several methods and an apparatus for treatment of a substrate. In those methods, at least one liquid is applied thereto and electromagnetic radiation is generated in the liquid by means of radiation before applying the liquid to the substrate. Electromagnetic radiation is introduced into the film such that at least a portion of the radiation reaches the substrate surface. In another method for changing the surface characteristics of a substrate having an at least partially hydrophobic substrate surface such that at least a portion of said surface gets a hydrophilic surface characteristic, a liquid is applied to at least the partial area of the surface of the substrate, and UV radiation of a predetermined wavelength is guided onto at least the partial area of the surface of said substrate.
    Type: Grant
    Filed: March 15, 2010
    Date of Patent: May 30, 2017
    Assignee: Suss Microtec Photomask Equipment GmbH & Co. KG
    Inventors: Uwe Dietze, Peter Dress, Sherjang Singh
  • Patent number: 9640418
    Abstract: An industrial-scale apparatus, system, and method for handling precisely aligned and centered semiconductor wafer pairs for wafer-to-wafer aligning and bonding applications includes an end effector having a frame member and a floating carrier connected to the frame member with a gap formed therebetween, wherein the floating carrier has a semi-circular interior perimeter. The centered semiconductor wafer pairs are positionable within a processing system using the end effector under robotic control. The centered semiconductor wafer pairs are bonded together without the presence of the end effector in the bonding device.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: May 2, 2017
    Assignee: SUSS MicroTec Lithography GmbH
    Inventors: Hale Johnson, Gregory George
  • Publication number: 20170117241
    Abstract: A semiconductor structure includes an electrically conductive structure formed upon an uppermost organic layer of a semiconductor substrate. A capping layer is formed upon the uppermost organic layer covering the electrically conductive structure. A maskless selective removal lasering technique ejects portions of the capping layer while retaining the portion of the capping layer covering the electrically conductive structure. Portions of the capping layer are ejected from the uppermost organic layer by a shockwave as a result of the laser beam vaporizing the uppermost organic layer of the semiconductor substrate. Portions of the capping layer contacting the electrically conductive structure are retained by the conductive structure dissipating heat from the laser that would otherwise vaporize the uppermost organic layer of the semiconductor substrate.
    Type: Application
    Filed: October 22, 2015
    Publication date: April 27, 2017
    Applicant: SUSS MicroTec Photonic Systems Inc.
    Inventors: Brian M. Erwin, Brittany L. Hedrick, Nicholas A. Polomoff, TaeHo Kim, Matthew E. Souter
  • Patent number: 9583374
    Abstract: Described methods and apparatus provide a controlled perturbation to an adhesive bond between a device wafer and a carrier wafer. The controlled perturbation, which can be mechanical, chemical, thermal, or radiative, facilitates the separation of the two wafers without damaging the device wafer. The controlled perturbation initiates a crack either within the adhesive joining the two wafers, at an interface within the adhesive layer (such as between a release layer and the adhesive), or at a wafer/adhesive interface. The crack can then be propagated using any of the foregoing methods, or combinations thereof, used to initiate the crack.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: February 28, 2017
    Assignee: SUSS MicroTec Lithography GmbH
    Inventors: Gregory George, Christopher Rosenthal
  • Patent number: 9472437
    Abstract: Described methods and apparatus provide a controlled perturbation to an adhesive bond between a device wafer and a carrier wafer. The controlled perturbation, which can be mechanical, chemical, thermal, or radiative, facilitates the separation of the two wafers without damaging the device wafer. The controlled perturbation initiates a crack either within the adhesive joining the two wafers, at an interface within the adhesive layer (such as between a release layer and the adhesive), or at a wafer/adhesive interface. The crack can then be propagated using any of the foregoing methods, or combinations thereof, used to initiate the crack.
    Type: Grant
    Filed: December 19, 2014
    Date of Patent: October 18, 2016
    Assignee: SUSS MICROTEC LITHOGRAPHY GMBH
    Inventors: Gregory George, Christopher Rosenthal
  • Patent number: 9458002
    Abstract: A bottle cap adapter for supplying liquids, particularly viscous liquids, comprising: a body part; and a vent tube comprising a first opening and a second opening, the first opening being configured to be put inside a bottle in the vicinity of the bottom of the bottle, wherein the body part further comprises a first surface and a second surface, the first surface being perpendicular to the vent tube and the second surface being parallel to or tilted to the first surface, e.g., by an angle of 0° to 40°, wherein the body part further comprises a channel from the first surface to the second surface, wherein at least one part of the channel comprises a connector extending to the second surface, the connector being complementary to a connector of the bottle, wherein the body part is further configured to be coupled to a bottle supply system, and wherein the vent tube is at least partially located in the channel of the body part.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: October 4, 2016
    Assignee: SUSS MicroTec Lithography GmbH
    Inventors: Oliver Treichel, Suayib Kartal, Kader Mekias, Aaron Foley, Greg George
  • Publication number: 20160240414
    Abstract: The invention relates to a chuck and a method for suction and holding a wafer by said chuck, wherein the chuck comprises: a flat top face being subdivided into several suction segments, wherein the suction segments are each configured for suctioning a fluid; and a bottom face. The method comprises the steps: bringing, within a fluid, wafer and top face of the chuck into vicinity such that two or more of the suction segments are covered, at least loosely covered, by the wafer; choosing, from the suction segments not yet been activated, a suction segment having a minimal distance to the wafer; activating the suction segment chosen in the previous step; once the wafer in the area of the last-activated suction segment tightly touches the top face of the chuck and as long as at least one suction segment is not yet activated: repeating the foregoing steps.
    Type: Application
    Filed: September 26, 2013
    Publication date: August 18, 2016
    Applicant: Suss Microtec Lithography GMBH
    Inventors: Matthias Conradi, Sven Hansen
  • Patent number: 9329473
    Abstract: The invention relates to a method and device for expanding the travel or control displacement of linear actuators that is available during an imprinting or embossing stroke. The wedge error compensating head (2) comprises a movable part (4), a stationary part (3) and at least three linear actuators (8). Each linear actuator (8) is connected to one of the parts (3, 4) at one end and to the other of the two parts (4, 3) by wedges (9) at the other end. By means of the wedges (9), it is possible to coarsely or roughly compensate for wedge errors and possible tolerances of individual subcomponents of the system. The linear actuators (8) are only used for fine or precision compensation for the wedge error. In this way, sufficient control displacement is available for the imprinting stroke with the linear actuators.
    Type: Grant
    Filed: February 14, 2011
    Date of Patent: May 3, 2016
    Assignee: SUSS MICROTEC LITHOGRAPHY GMBH
    Inventors: Sven Hansen, Matthias Conradi, Georg Fink
  • Patent number: 9281229
    Abstract: A method for debonding two temporary bonded wafers, includes providing a debonder comprising a top chuck assembly, a bottom chuck assembly, a static gantry supporting the top chuck assembly, an X-axis carriage drive supporting the bottom chuck assembly and an X-axis drive control configured to drive horizontally the X-axis carriage drive and the bottom chuck assembly from a loading zone to a process zone under the top chuck assembly and from the process zone back to the loading zone. Next, loading a wafer pair comprising a carrier wafer bonded to a device wafer via an adhesive layer upon the bottom chuck assembly at the loading zone oriented so that the unbonded surface of the device wafer is in contact with the bottom assembly. Next, driving the X-axis carriage drive and the bottom chuck assembly to the process zone under the top chuck assembly. Next, placing the unbonded surface of the carrier wafer in contact with the top chuck assembly and holding the carrier wafer by the top chuck assembly.
    Type: Grant
    Filed: December 1, 2014
    Date of Patent: March 8, 2016
    Assignee: SUSS MicroTec Lithography GmbH
    Inventors: Gregory George, Hale Johnson, Patrick Gorun, Emmett Hughlett, James Hermanowski, Matthew Stiles
  • Publication number: 20150348831
    Abstract: A method of selectively locating a barrier layer on a substrate includes forming a barrier layer on a surface of the substrate. The barrier layer comprises of a metal element and a non-metal element. The barrier layer may also be formed from a metal element and non-metal element. The method further includes forming an electrically conductive film layer on the barrier layer, and forming a metallic portion in the electrically conductive film layer. The method further includes selectively ablating portions of the barrier layer from the dielectric layer to selectively locate place the barrier layer on the substrate.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 3, 2015
    Applicants: International Business Machines Corporation, SUSS MicroTec Photonic Systems Inc.
    Inventors: Yuri M. Brovman, Brian M. Erwin, Nicholas A. Polomoff, Jennifer D. Schuler, Matthew E. Souter, Christopher L. Tessler
  • Patent number: 9159595
    Abstract: An improved wafer carrier device for carrying and holding semiconductor wafers that have a thickness of below 100 micrometers includes a transportable wafer chuck having an enclosed vacuum reservoir and a top surface configured to support a wafer. The top surface has one or more through-openings extending from the top surface to the vacuum reservoir and the wafer is held onto the top surface via vacuum from the vacuum reservoir drawn through the through-openings.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: October 13, 2015
    Assignee: SUSS MicroTec Lithography GmbH
    Inventors: Daniel T. Hurley, Gregory George
  • Patent number: 9132511
    Abstract: Various techniques are disclosed for an apparatus and a method to remove a layer from a substrate having a pattern formed on the layer. In one example, the apparatus comprises a stage configured to receive and hold the substrate. The apparatus may further comprise an irradiating device comprising a projection lens and configured to irradiate the surface of the substrate with pulses of laser light having a selected fluence to remove an interstitial portion of the layer between the pattern without removing the pattern for corresponding irradiated areas of the substrate. The pulses of laser light may be focused through the projection lens, and the stage and the projection lens may be configured to move continuously relative each other to irradiate a plurality of areas of the substrate with the pulses of laser light.
    Type: Grant
    Filed: July 14, 2014
    Date of Patent: September 15, 2015
    Assignee: SUSS MICROTEC PHOTONIC SYSTEMS, INC.
    Inventor: Matthew E. Souter
  • Publication number: 20150251396
    Abstract: An apparatus for temporary bonding first and second wafers includes, a first coating chamber configured to apply a first adhesive layer upon a first surface of a first wafer; a second coating chamber configured to apply a second adhesive layer upon a first surface of a second wafer; a curing chamber configured to cure the first adhesive layer of the first wafer; a bonder module comprising an upper chuck assembly and a lower chuck assembly arranged below and opposite the upper chuck assembly. The upper chuck assembly is configured to hold the first wafer so that its first surface with the cured first adhesive layer faces down. The lower chuck assembly is configured to hold the second wafer so that the second adhesive layer faces up and is opposite to the cured first adhesive layer. The lower chuck assembly is configured to move upwards and thereby to bring the second adhesive layer in contact with the cured first adhesive layer.
    Type: Application
    Filed: May 18, 2015
    Publication date: September 10, 2015
    Applicant: SUSS MICROTEC LITHOGRAPHY GMBH
    Inventors: GREGORY GEORGE, Stefan Lutter
  • Publication number: 20150206783
    Abstract: A system for mechanically holding a substrate during processing includes a closeable processing chamber and an upper block assembly located inside the processing chamber and configured to hold a wafer via three mechanical holding assemblies. The three mechanical holding assemblies protrude above a cover of the wafer processing chamber and are configured to hold the wafer at an edge of the wafer and to be adjusted from outside of the processing chamber. Two of the mechanical holding assemblies are lockable in position relative to the wafer edge and one of the mechanical holding assemblies is configured to maintain a hold preload on the wafer edge via a preload mechanism.
    Type: Application
    Filed: January 15, 2015
    Publication date: July 23, 2015
    Applicant: SUSS MICROTEC LITHOGRAPHY, GMBH
    Inventors: HALE JOHNSON, GREGORY GEORGE
  • Patent number: 9064686
    Abstract: A method for temporary bonding first and second wafers includes, applying a first adhesive layer upon a first surface of a first wafer and then curing the first adhesive layer. Next, applying a second adhesive layer upon a first surface of a second wafer. Next, inserting the first wafer into a bonder module and holding the first wafer by an upper chuck assembly so that its first surface with the cured first adhesive layer faces down. Next, inserting the second wafer into the bonder module and placing the second wafer upon a lower chuck assembly so that the second adhesive layer faces up and is opposite to the first adhesive layer. Next, moving the lower chuck assembly upwards and bringing the second adhesive layer in contact with the cured first adhesive layer, and then curing the second adhesive layer.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: June 23, 2015
    Assignee: SUSS MICROTEC LITHOGRAPHY, GmbH
    Inventors: Gregory George, Stefan Lutter
  • Publication number: 20150083342
    Abstract: A method for debonding two temporary bonded wafers, includes providing a debonder comprising a top chuck assembly, a bottom chuck assembly, a static gantry supporting the top chuck assembly, an X-axis carriage drive supporting the bottom chuck assembly and an X-axis drive control configured to drive horizontally the X-axis carriage drive and the bottom chuck assembly from a loading zone to a process zone under the top chuck assembly and from the process zone back to the loading zone. Next, loading a wafer pair comprising a carrier wafer bonded to a device wafer via an adhesive layer upon the bottom chuck assembly at the loading zone oriented so that the unbonded surface of the device wafer is in contact with the bottom assembly. Next, driving the X-axis carriage drive and the bottom chuck assembly to the process zone under the top chuck assembly. Next, placing the unbonded surface of the carrier wafer in contact with the top chuck assembly and holding the carrier wafer by the top chuck assembly.
    Type: Application
    Filed: December 1, 2014
    Publication date: March 26, 2015
    Applicant: SUSS MICROTEC LITHOGRAPHY, GMBH
    Inventors: GREGORY GEORGE, HALE JOHNSON, PATRICK GORUN, EMMETT HUGHLETT, JAMES HERMANOWSKI, MATTHEW STILES
  • Patent number: 8950459
    Abstract: Described methods and apparatus provide a controlled perturbation to an adhesive bond between a device wafer and a carrier wafer. The controlled perturbation, which can be mechanical, chemical, thermal, or radiative, facilitates the separation of the two wafers without damaging the device wafer. The controlled perturbation initiates a crack either within the adhesive joining the two wafers, at an interface within the adhesive layer (such as between a release layer and the adhesive), or at a wafer/adhesive interface. The crack can then be propagated using any of the foregoing methods, or combinations thereof, used to initiate the crack.
    Type: Grant
    Filed: October 26, 2012
    Date of Patent: February 10, 2015
    Assignee: SUSS MicroTec Lithography GmbH
    Inventors: Gregory George, Christopher Rosenthal
  • Patent number: 8919412
    Abstract: A debonder apparatus for debonding two via an adhesive layer temporary bonded wafers includes a top chuck assembly, a bottom chuck assembly, a static gantry supporting the top chuck assembly, an X-axis carriage drive supporting the bottom chuck assembly, and an X-axis drive control. The top chuck assembly includes a heater and a wafer holder. The X-axis drive control drives horizontally the bottom chuck assembly from a loading zone to a process zone under the top chuck assembly and from the process zone back to the loading zone. A wafer pair comprising a carrier wafer bonded to a device wafer via an adhesive layer is placed upon the bottom chuck assembly at the loading zone oriented so that the unbonded surface of the device wafer is in contact with the bottom assembly and is carried by the X-axis carriage drive to the process zone under the top chuck assembly and the unbonded surface of the carrier wafer is placed in contact with the top chuck assembly.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: December 30, 2014
    Assignee: Suss Microtec Lithography, GmbH
    Inventors: Gregory George, Hale Johnson, Patrick Gorun, Emmett Hughlett, James Hermanowski, Matthew Stiles
  • Publication number: 20140319786
    Abstract: A device for locating and engaging a notch on the perimeter of a circular wafer includes a notch locating component and a first plate. The notch locating component is configured to move linearly along a first axis and includes a front elongated component extending along a second axis perpendicular to the first axis and having a front surface, a back surface opposite to the front surface and a first protrusion extending from the front surface of the elongated component. The first protrusion has a shape complementing the shape of a notch formed on the perimeter of a circular wafer. As the notch locating component is driven toward the perimeter of the circular wafer along the first axis, a distance between the back surface of the elongated component and a front surface of the first plate is measured and the value of the measured distance is used to determine engagement of the first protrusion with the notch.
    Type: Application
    Filed: July 14, 2014
    Publication date: October 30, 2014
    Applicant: SUSS MICROTEC LITHOGRAPHY, GmbH
    Inventors: HALE JOHNSON, GREGORY GEORGE, MICHAEL BRENNEN