Patents Assigned to SuVolta, Inc.
  • Publication number: 20140015067
    Abstract: A planar transistor with improved performance has a source and a drain on a semiconductor substrate that includes a substantially undoped channel extending between the source and the drain. A gate is positioned over the substantially undoped channel on the substrate. Implanted source/drain extensions contact the source and the drain, with the implanted source/drain extensions having a dopant concentration of less than about 1×1019 atoms/cm3, or alternatively, less than one-quarter the dopant concentration of the source and the drain.
    Type: Application
    Filed: September 18, 2013
    Publication date: January 16, 2014
    Applicant: SuVolta, Inc.
    Inventors: Pushkar Ranade, Lucian Shifren, Sachin R. Sonkusale
  • Patent number: 8629016
    Abstract: Multiple transistor types are formed in a common epitaxial layer by differential out-diffusion from a doped underlayer. Differential out-diffusion affects the thickness of a FET channel, the doping concentration in the FET channel, and distance between the gate dielectric layer and the doped underlayer. Differential out-diffusion may be achieved by differentially applying a dopant migration suppressor such as carbon; differentially doping the underlayer with two or more dopants having the same conductivity type but different diffusivities; and/or differentially applying thermal energy.
    Type: Grant
    Filed: April 30, 2012
    Date of Patent: January 14, 2014
    Assignee: SuVolta, Inc.
    Inventors: Thomas Hoffmann, Pushkar Ranade, Lucian Shifren, Scott E. Thompson
  • Patent number: 8614128
    Abstract: Methods for fabricating semiconductor devices and devices therefrom are provided. A method includes providing a substrate having a semiconducting surface with first and second layers, where the semiconducting surface has a plurality of active regions comprising first and second active regions. In the first active region, the first layer is an undoped layer and the second layer is a highly doped screening layer. The method also includes removing a part of the first layer to reduce a thickness of the substantially undoped layer for at least a portion of the first active region without a corresponding thickness reduction of the first layer in the second active region. The method additionally includes forming semiconductor devices in the plurality of active regions. In the method, the part of the first layer removed is selected based on a threshold voltage adjustment required for the substrate in the portion of the first active region.
    Type: Grant
    Filed: August 22, 2012
    Date of Patent: December 24, 2013
    Assignee: Suvolta, Inc.
    Inventors: Scott E. Thompson, Thomas Hoffmann, Lance Scudder, U. C. Sridharan, Dalong Zhao, Pushkar Ranade, Michael Duane, Paul E. Gregory
  • Publication number: 20130328129
    Abstract: A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The semiconductor structure includes an analog device and a digital device each having an epitaxial channel layer where a single gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the digital device and one of a double and triple gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the analog device.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 12, 2013
    Applicant: SuVolta, Inc.
    Inventors: Lucian Shifren, Pushkar Ranade, Scott E. Thompson, Sachin R. Sonkusale, Weimin Zhang
  • Patent number: 8604527
    Abstract: Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 10, 2013
    Assignee: SuVolta, Inc.
    Inventors: Scott E. Thompson, Damodar R. Thummalapally
  • Patent number: 8604530
    Abstract: Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: December 10, 2013
    Assignee: SuVolta, Inc.
    Inventors: Scott E. Thompson, Damodar R. Thummalapally
  • Patent number: 8599623
    Abstract: An integrated circuit device can include a plurality of test elements, each comprising at least one first switch coupled between a node within a tested section and an intermediate node, a test switch coupled between the intermediate node and a forced voltage node, and a second switch coupled between the intermediate node and an output node; wherein the forced voltage node is coupled to receive a forced voltage substantially the same as a test voltage applied to the output node in a test mode.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: December 3, 2013
    Assignee: Suvolta, Inc.
    Inventors: Lawrence T Clark, Richard S Roy
  • Patent number: 8569128
    Abstract: A semiconductor structure includes a first PMOS transistor element having a gate region with a first gate metal associated with a PMOS work function and a first NMOS transistor element having a gate region with a second metal associated with a NMOS work function. The first PMOS transistor element and the first NMOS transistor element form a first CMOS device. The semiconductor structure also includes a second PMOS transistor that is formed in part by concurrent deposition with the first NMOS transistor element of the second metal associated with a NMOS work function to form a second CMOS device with different operating characteristics than the first CMOS device.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: October 29, 2013
    Assignee: SuVolta, Inc.
    Inventors: Lucian Shifren, Pushkar Ranade, Sachin R. Sonkusale
  • Patent number: 8569156
    Abstract: A method for fabricating field effect transistors using carbon doped silicon layers to substantially reduce the diffusion of a doped screen layer formed below a substantially undoped channel layer includes forming an in-situ epitaxial carbon doped silicon substrate that is doped to form the screen layer in the carbon doped silicon substrate and forming the substantially undoped silicon layer above the carbon doped silicon substrate. The method may include implanting carbon below the screen layer and forming a thin layer of in-situ epitaxial carbon doped silicon above the screen layer. The screen layer may be formed either in a silicon substrate layer or the carbon doped silicon substrate.
    Type: Grant
    Filed: May 16, 2012
    Date of Patent: October 29, 2013
    Assignee: SuVolta, Inc.
    Inventors: Lance Scudder, Pushkar Ranade, Charles Stager, Urupattur C. Sridharan, Dalong Zhao
  • Patent number: 8563384
    Abstract: A planar transistor with improved performance has a source and a drain on a semiconductor substrate that includes a substantially undoped channel extending between the source and the drain. A gate is positioned over the substantially undoped channel on the substrate. Implanted source/drain extensions contact the source and the drain, with the implanted source/drain extensions having a dopant concentration of less than about 1×1019 atoms/cm3?, or alternatively, less than one-quarter the dopant concentration of the source and the drain.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: October 22, 2013
    Assignee: SuVolta, Inc.
    Inventors: Pushkar Ranade, Lucian Shifren, Sachin R. Sonkusale
  • Patent number: 8541824
    Abstract: Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: September 24, 2013
    Assignee: SuVolta, Inc.
    Inventors: Scott E. Thompson, Damodar R. Thummalapally
  • Patent number: 8530286
    Abstract: A structure and method of fabrication thereof relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. The semiconductor structure includes an analog device and a digital device each having an epitaxial channel layer where a single gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the digital device and one of a double and triple gate oxidation layer is on the epitaxial channel layer of NMOS and PMOS transistor elements of the analog device.
    Type: Grant
    Filed: December 17, 2010
    Date of Patent: September 10, 2013
    Assignee: SuVolta, Inc.
    Inventors: Lucian Shifren, Pushkar Ranade, Scott E. Thompson, Sachin R. Sonkusale, Weimin Zhang
  • Patent number: 8525271
    Abstract: A method for fabricating a semiconductor structure with a channel stack includes forming a screening layer under a gate of a PMOS transistor element and a NMOS transistor element, forming a threshold voltage control layer on the screening layer, and forming an epitaxial channel layer on the threshold control layer. At least a portion of the epitaxial channel layers for the PMOS transistor element and the NMOS transistor element are formed as a common blanket layer. The screening layer for the PMOS transistor element may include antimony as a dopant material that may be inserted into the structure prior to or after formation of the epitaxial channel layer.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: September 3, 2013
    Assignee: SuVolta, Inc.
    Inventors: Paul E. Gregory, Lucian Shifren, Pushkar Ranade
  • Patent number: 8461875
    Abstract: Digital circuits are disclosed that may include multiple transistors having controllable current paths coupled between first and second logic nodes. One or more of the transistors may have a deeply depleted channel formed below its gate that includes a substantially undoped channel region formed over a relatively highly doped screen layer formed over a doped body region. Resulting reductions in threshold voltage variation may improve digital circuit performance. Logic circuit, static random access memory (SRAM) cell, and passgate embodiments are disclosed.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: June 11, 2013
    Assignee: SuVolta, Inc.
    Inventors: Scott E. Thompson, Lawrence T. Clark
  • Patent number: 8421162
    Abstract: An advanced transistor with punch through suppression includes a gate with length Lg, a well doped to have a first concentration of a dopant, and a screening region positioned under the gate and having a second concentration of dopant. The second concentration of dopant may be greater than 5×1018 dopant atoms per cm3. At least one punch through suppression region is disposed under the gate between the screening region and the well. The punch through suppression region has a third concentration of a dopant intermediate between the first concentration and the second concentration of dopant. A bias voltage may be applied to the well region to adjust a threshold voltage of the transistor.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: April 16, 2013
    Assignee: Suvolta, Inc.
    Inventors: Lucian Shifren, Pushkar Ranade, Paul E. Gregory, Sachin R. Sonkusale, Weimin Zhang, Scott E. Thompson
  • Patent number: 8404551
    Abstract: A planar transistor with improved performance has a source and a drain on a semiconductor substrate that includes a substantially undoped channel extending between the source and the drain. A gate is positioned over the substantially undoped channel on the substrate. Implanted source/drain extensions contact the source and the drain, with the implanted source/drain extensions having a dopant concentration of less than about 1×1019 atoms/cm3, or alternatively, less than one-quarter the dopant concentration of the source and the drain.
    Type: Grant
    Filed: December 3, 2010
    Date of Patent: March 26, 2013
    Assignee: Suvolta, Inc.
    Inventors: Pushkar Ranade, Lucian Shifren, Sachin R. Sonkusale
  • Patent number: 8400219
    Abstract: Circuits are disclosed that may include a plurality of transistors having controllable current paths coupled between at least a first and second node, the transistors configured to generate an analog electrical output signal in response to an analog input value; wherein at least one of the transistors has a deeply depleted channel formed below its gate that includes a substantially undoped channel region formed over a relatively highly doped screen layer formed over a doped body region.
    Type: Grant
    Filed: March 24, 2011
    Date of Patent: March 19, 2013
    Assignee: Suvolta, Inc.
    Inventors: Lawrence T. Clark, Scott E. Thompson
  • Patent number: 8377807
    Abstract: Defects in a semiconductor substrate due to ion implantation are minimized by forming an implant region in the semiconductor substrate and subjecting the semiconductor substrate to a first anneal to recrystallize the semiconductor substrate. The semiconductor substrate is subjected to a second anneal to suppress diffusion of implanted ions in the semiconductor substrate. The first anneal being at a lower temperature and longer duration than the second anneal.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: February 19, 2013
    Assignee: Suvolta, Inc.
    Inventors: Lucian Shifren, Taiji Ema
  • Patent number: 8377783
    Abstract: Punch-through in a transistor device is reduced by forming a well layer in an implant region, forming a stop layer in the well layer of lesser depth than the well layer, and forming a doped layer in the stop layer of lesser depth than the stop layer. The stop layer has a lower concentration of impurities than the doped layer in order to prevent punch-through without increasing junction leakage.
    Type: Grant
    Filed: September 30, 2010
    Date of Patent: February 19, 2013
    Assignee: Suvolta, Inc.
    Inventors: Lucian Shifren, Taiji Ema
  • Publication number: 20130020638
    Abstract: Some structures and methods to reduce power consumption in devices can be implemented largely by reusing existing bulk CMOS process flows and manufacturing technology, allowing the semiconductor industry as well as the broader electronics industry to avoid a costly and risky switch to alternative technologies. Some of the structures and methods relate to a Deeply Depleted Channel (DDC) design, allowing CMOS based devices to have a reduced ?VT compared to conventional bulk CMOS and can allow the threshold voltage VT of FETs having dopants in the channel region to be set much more precisely. The DDC design also can have a strong body effect compared to conventional bulk CMOS transistors, which can allow for significant dynamic control of power consumption in DDC transistors. Additional structures, configurations, and methods presented herein can be used alone or in conjunction with the DDC to yield additional and different benefits.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 24, 2013
    Applicant: SUVOLTA, INC.
    Inventors: Scott E. Thompson, Damodar R. Thummalapally