Abstract: A method includes generating a first illumination with an illumination source, and directing the first illumination to pass through an aperture to generate an illumination pattern for defining an illumination field of view that is configured to indicate a boundary surrounding the imaging field of view of the imaging system. The intensity of the first illumination changes with time. The intensity variation of the illumination pattern is perceivable by a human user. The method also includes detecting light from the barcode with the imaging sensor to create imaging data while the barcode is illuminated by a second illumination, and processing the imaging data to decode an image of the barcode.
Abstract: Methods, systems, and apparatuses for ways of locating tags are described. A power level of a RFID communication signal transmitted by a RFID device, such as a reader, is adjusted to hone in on a specific tag. For example, the power level may be decreased or increased, depending on the situation, to hone in on the tag. The RFID device may be repositioned to aid in further honing in on the tag. Transmitting RFID communication signals, adjusting transmit power levels, and repositioning the RFID device may be iterated as needed to hone in on the tag.
Abstract: An inventory monitoring controller maintains information reflecting a current inventory of articles based on radio frequency identification (RFID) tag identifying information received from one or more RFID tag readers in the context of inventory polling operations. In an embodiment, the controller also adjusts an operational parameter (e.g., a missing article detection threshold or a variable polling parameter) based on an analysis of the RFID tag identifying information. For example, a variable polling parameter may be adjusted in response to an occurrence of a triggering event (e.g., an inventory change indicated by the RFID tag identifying information or an occurrence of a temporal event), and a missing article detection threshold may be adjusted based on historical information relating to the detection of (or failure to detect) a particular RFID tag.
Abstract: A system comprises an accessory, a mobile unit module, and a battery pack module. The accessory is worn one of on and near a portion of a body of a user. The mobile unit module removably couples to the accessory. The battery pack module removably couples to one of the mobile unit and the accessory.
Type:
Grant
Filed:
December 13, 2007
Date of Patent:
August 27, 2013
Assignee:
Symbol Technologies, Inc.
Inventors:
Thomas Wulff, Daniella Strat, Mark Wheeler, Nicole D. Tricoukes, Mark Duron, David Bellows
Abstract: Compensating reverberation and flight times in an ultrasonic positioning system includes establishing maximum flight and reverberation times for ultrasonic signals within an environment. These maximum times are added to define a maximum buffer time period. Ultrasonic signals are emitted sequentially from each of a plurality of emitters, where the ultrasonic signal from each emitter is separated in time by at least one maximum buffer time period. Afterwards, a reverberation and flight time for each ultrasonic signal is determined and then the flight time of the next subsequent emitter is subtracted to define an adjusted emit time for the emitter that emitted that ultrasonic signal. An emitting time for a next subsequent emitter as adjusted to maximize the refresh rate. Emitters are scheduled to emit such that the receiver is always receiving a signal or waiting for actual reverberation.
Abstract: Targets associated with transactions to be processed at a workstation are read by capturing return light from the targets with an array of light sensors of a solid-state imager having a field of view that extends through a workstation window to the targets. A controller controls the imager to operate at a frame rate to acquire images of the targets over successive frames in either a batch mode or a free-running mode. A memory stores the acquired images. The controller processes all of the stored images, and processes at least one of the stored images over an extended time period greater than one of the frames.
Type:
Grant
Filed:
October 21, 2011
Date of Patent:
August 20, 2013
Assignee:
Symbol Technologies, Inc.
Inventors:
Christopher Warren Brock, Robert Pang, Thomas Lackemann, Miroslav Trajkovic
Abstract: The present invention is directed to systems that use frequency selective surfaces (FSS) to aid in the operation of radio frequency identification (RFID) devices and products. In one embodiment, a system for interrogating radio frequency identification (RFID) tags includes a conveyor belt and an RFID reader. The conveyor belt has a first surface and a second surface. The first surface is configured to receive an item to which an RFID tag is affixed and the second surface is configured to slide on a metal slide plate. The RFID reader is configured to transmit instructions embodied in a radio frequency (RF) signal to the RFID tag, wherein the metal slide plate is positioned between the RFID reader and the RFID tag and comprises a frequency selective surface that is substantially transparent to the RF signal.
Abstract: A system and method embeds text in a multicast transmission. An exemplary method comprises receiving non-voice data. The non-voice data is embedded within digitized voice data. The digitized voice data with the embedded non-voice data is wirelessly transmitted, by a computing device, as a multicast transmission to a plurality of mobile devices.
Type:
Grant
Filed:
February 28, 2007
Date of Patent:
August 20, 2013
Assignee:
Symbol Technologies, Inc.
Inventors:
John H. Du Hart, IV, Kelly Schlueter, Michael Faith, William Sakoda, Stephen F. Paulus, Michael N. Hagans, Edward Moskaluk
Abstract: A multicamera imaging-based bar code reader 10 for imaging a target bar code 30 on a target object 32 features: a housing 20 supporting a plurality of transparent windows H, V and defining an interior region, an imaging system including a plurality of camera assemblies C1-C5 coupled to an image processing system, each camera assembly of the plurality of camera assemblies being positioned within the housing interior. Each camera assembly includes a sensor array. One or more light reflecting fold mirrors M1-M14 define a camera assembly field of view positioned with respect to said light source and the sensor array at locations along a light path to transmit light from light source to the field of view and transmit light that bounces from a target in the field of view back along said light path to the image capture sensor array.
Abstract: A data capture device is described. The data capture device includes an imager simultaneously capturing a barcode and an image associated with the barcode. A memory is coupled to the imager for storing the barcode and the image. A processor is coupled to the memory for decoding the barcode and processing the image. A notification system notifies a user that the image is being processed prior to the processor completing the processing of the image.
Abstract: A system and methods for allowing an enterprise management system to provision and configure a WWAN communication device on a managed network without incurring the tedious task of manually entering all the configuration information for every WWAN communication device on the enterprise management system. A dedicated communication link is provided with a standard communication protocol so each WWAN device can communicate with a carrier server and have the carrier server acts as a validation point and communication bridge to the enterprise management server until the WWAN communication device is configured for management by the enterprise management server.
Abstract: A radio frequency identification (RFID) system used to perform electronic article surveillance comprises a RFID tag and a RFID reader. The RFID tag is affixed to an object, and the RFID reader, having a plurality of antennas, is in radio frequency (RF) communication with the RFID tag. The plurality of antennas are arranged to have a spatial relationship with one another to monitor and communicate with the RFID tag such that a likelihood of a security breach of the RFID tag is determined. Determining the likelihood of the security breach is based, at least in part, on a signal strength of a read of the RFID tag at each antenna relative to the plurality of antennas.
Abstract: A system is provided for a wireless local area network. The system includes, but is not limited to, at least one cell controller and simplified RF ports which are configured to provide lower level media access control functions. Higher level media access control functions are provided in a cell controller, which may service one or more RF ports that are capable operating with at least two wireless local area subnetworks. Mobile units can also be configured with the higher level media access control functions being performed in a host processor.
Abstract: Described is a method and system for providing a verified delivery of a package. First, registration information is obtained from a recipient; the registration information includes a biometric identification of the recipient. A delivery service obtains the package from a sender which is addressed to the recipient and forwards the package to the recipient. At the point of delivery, the delivery service obtains a further biometric identification from the recipient using a portable device which includes a biometric reader. The delivery service releases the package to the recipient only if the biometric identification is substantially identical to the further biometric identification.
Type:
Grant
Filed:
March 1, 2006
Date of Patent:
July 30, 2013
Assignee:
Symbol Technologies, Inc.
Inventors:
Allan Stuart Algazi, Salvatore Anthony Sparacino
Abstract: A method and controller for detecting an unauthorized access point in a wireless communication network includes a first step of generating (200) a probe identity that is unused in the wireless communication network. A next step includes informing (202) adopted access points in the communication network of this generated probe identity, and that packets from this generated probe identity should be ignored. A next step includes broadcasting (204) at least one probe request using the generated probe identity. A next step includes detecting (206) if there are any probe responses to the at least one probe request, indicating an unauthorized access point. A next step includes providing an alert (214, 216, 218) if an unauthorized access point is detected.
Abstract: A method of decoding a barcode includes generating a first illumination towards a target object with a first illumination level, capturing a first image during a first exposure time period, and determining a first location and a second location on a scan line in the first image to find a switchover condition. If the switchover condition indicates the presence of a mobile display device, the method further includes generating a second illumination towards the target object with a second illumination level, capturing a second image during a second exposure time period, and decoding the barcode in the second image. Here, at least one of the second illumination level and the second exposure time period is determined based on values of pixels on the scan line between the first location and the second location.
Abstract: An antenna includes a dipole radiator region forming a series resonant tank having a first quality factor value Q1, and a loop compensator/radiator region integral with the dipole region and forming a parallel resonant tank having a second quality factor value Q2 that is substantially equal to Q2. The antenna may be a conductive sheet antenna (e.g., comprising copper tape) having a generally “A” shaped structure with a discontinuity in a middle segment.
Abstract: A headset comprises an audio output device, an audio input device, and a wire. The audio output device plays outgoing audio data. The audio input device receives incoming audio data. The wire connects the audio input device to a sound device that interprets the incoming audio data. The wire is further configured to be an antenna to one of transmit and receive radio frequency signals. The wire is further connected to a transceiver.
Abstract: A method and apparatus for powering a handheld data capture device. The apparatus includes a cradle configured to accommodate a handheld data capture device detachably settled therein. The apparatus also includes an energy reservoir installed in the cradle, a charging interface, and a port operative to charge at least the energy reservoir with a current-limited host. The charging interface on the cradle is operative to charge the handheld data capture device with at least the energy reservoir.
Abstract: A method of operating a barcode reader. The method includes (1) detecting a first pulling of the trigger while the barcode reader is at the waiting mode; (2) detecting a first release of the trigger within a first predetermined time period after the first pulling of the trigger is detected, for operating the barcode reader in the aiming mode if the first release of the trigger is detected within the first predetermined time period,; and (3) detecting a second pulling of the trigger while the barcode reader is at the aiming mode within a second predetermined time period after the first release of the trigger is detected, for operating the barcode reader in the decoding mode if the second pulling of the trigger is detected within the second predetermined time period.