Patents Assigned to System General Corporation
  • Publication number: 20130250639
    Abstract: The present invention provides a digital controller for a power converter. The digital controller includes a microcontroller, an analog-to-digital converter, a signal generator, a protection circuit, and a PWM circuit. The analog-to-digital converter is coupled to an output of the power converter for generating a digital feedback signal for the microcontroller. The signal generator is controlled by the microcontroller for generating a switching signal coupled to switch a transformer. The protection circuit generates a reset signal to disable the switching signal. The microcontroller controls the switching signal to regulate the output of the power converter. The protection circuit is further coupled to detect a switching current of the transformer for controlling the reset signal if the switching current of the transformer exceeds a second threshold. The PWM circuit generates a PWM signal coupled to control a synchronous rectifying transistor for synchronous rectifying operation.
    Type: Application
    Filed: March 26, 2013
    Publication date: September 26, 2013
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Ta-Yung YANG, Yi-Min HSU, Chung-Hui YEH, Pei-Sheng TSU
  • Publication number: 20130241509
    Abstract: The present invention proposes a controller with power saving for a power converter. The controller includes a delay circuit, a detection circuit, an output circuit, a counter circuit, a wake-up circuit and a PWM circuit. The delay circuit determines a delay time. The detection circuit activates the delay circuit whenever an output load of the power converter is lower than a light-load threshold. The output circuit generates a power-saving signal to cease a regulation of the power converter after the delay time ends. The regulation of the power converter is resumed once the output load increases during the regulation of the power converter is being ceased. The counter circuit coupled to the delay circuit is counted by the delay circuit to determine a sleep period. The output circuit generates the power-saving signal to cease the regulation of the power converter after the sleep period ends.
    Type: Application
    Filed: March 6, 2013
    Publication date: September 19, 2013
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Chi-Chen CHUNG, Wei-Hsuan HUANG
  • Patent number: 8531210
    Abstract: A high-side switch control circuit is provided. The high-side switch control circuit includes an on/off transistor, a bias resistor, a zener diode, a level-shifting transistor, and a current source. The on/off transistor operates as a switch. The bias resistor is coupled to turn off the on/off transistor. The zener diode is coupled to clamp the maximum voltage of the on/off transistor. The level-shifting transistor is coupled to turn on the on/off transistor. The current source is coupled to the level-shifting transistor. The current source limits the maximum current of the level-shifting transistor.
    Type: Grant
    Filed: February 6, 2012
    Date of Patent: September 10, 2013
    Assignee: System General Corporation
    Inventor: Ta-Yung Yang
  • Patent number: 8525554
    Abstract: The present invention provides a high-side signal sensing circuit. The high-side signal sensing circuit comprises a signal-to-current converter, a second transistor and a resistor. The signal-to-current converter has a first transistor generating a mirror current in response to an input signal. The second transistor cascaded with the first transistor is coupled to receive the mirror current. The resistor generates an output signal in response to the mirror current. Wherein, the level of the output signal is corrected to the level of the input signal.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: September 3, 2013
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Kai-Fang Wei, Yen-Ting Chen
  • Publication number: 20130223111
    Abstract: A resonant control circuit for a power converter is provided. The resonant control circuit includes a microcontroller, a switching-signal timer, a first PWM timer, and a signal detection circuit. The microcontroller has a memory circuit, and the memory circuit includes a program memory and a data memory. The switching-signal timer generates a first switching signal coupled to switch a transformer. The first PWM timer generates a PWM signal coupled to control a synchronous rectifying transistor of the power converter for synchronous rectifying. The signal detection circuit is coupled to an output of the power converter for generating a feedback data from a feedback signal. The microcontroller controls the first switching signal by programming the switching-signal timer in accordance with the feedback data. The microcontroller controls the first PWM signal by programming the first PWM timer in response to the first switching signal.
    Type: Application
    Filed: February 18, 2013
    Publication date: August 29, 2013
    Applicant: SYSTEM GENERAL CORPORATION
    Inventor: SYSTEM GENERAL CORPORATION
  • Patent number: 8508091
    Abstract: An end cover adapted to engage with an end surface of a spindle of a motor rotor is proposed for securely coupling to the spindle with a plurality of permanent magnets disposed around the peripheral wall of the spindle. The end cover has a first surface facing an end surface of the spindle and an second surface opposing to the first surface, which is formed with a plurality of inserting slots indentedly disposed around the rim thereof and corresponding to the permanent magnets for coupling the ends of the permanent magnets, thereby securely fastening each of the permanent magnets to the spindle of the motor rotor. Further, the present invention further provides a motor rotor having the end covers described above.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: August 13, 2013
    Assignee: System General Corporation
    Inventors: Shih-Jen Yang, Hung-Sen Tu, I-Hsing Chen, Chen-Chia Yang, Chung-En Chen
  • Publication number: 20130182469
    Abstract: The present invention provides a circuit of reducing electro-magnetic interference for a power converter. The circuit includes an oscillator, a current generation circuit, a feedback circuit and a ramping generator. The oscillator has a first terminal for receiving a first jittering current and a second terminal for feeding a second jittering current. The first jittering current and the second jittering current are correlated with a line signal obtained from an input of the power converter to vary a frequency of the oscillator. The first jittering current and the second jittering current are unequal. As the first jittering current is set greater than the second jittering current, the frequency of the switching signal increases whenever the line signal is increasing. As the first jittering current is set lower than the second jittering current, the frequency of the switching signal decreases whenever the line signal is increasing.
    Type: Application
    Filed: January 16, 2012
    Publication date: July 18, 2013
    Applicant: SYSTEM GENERAL CORPORATION
    Inventor: Ting-Ta CHIANG
  • Patent number: 8488338
    Abstract: A controller for a power converter is provided. The controller includes a PWM circuit, a detection circuit, a signal generation circuit and an oscillation circuit. The PWM circuit generates a switching signal coupled to switch a transformer of the power converter. A feedback signal is coupled to the PWM circuit to disable the switching signal. The detection circuit is coupled to the transformer via a resistor for generating a valley signal in response to a signal waveform of the transformer. The signal generation circuit is coupled to receive the feedback signal and the valley signal for generating an enabling signal. The oscillation circuit generates a maximum frequency signal. The maximum frequency signal associates with the enabling signal to generate a pulse signal. The feedback signal is correlated to an output load of the power converter. The maximum frequency of the pulse signal is limited.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: July 16, 2013
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Jung-Sheng Chen, Li Lin
  • Patent number: 8482268
    Abstract: The present invention provides a correction circuit for a power converter. The correction circuit includes a sampling circuit, a demagnetizing-time circuit, a duty circuit, and a compensation circuit. The sampling circuit generates an average-current signal in response to a switching current of the power converter. The demagnetizing-time circuit generates a discharging-time signal in response to a switching signal and an input-voltage signal. The duty circuit generates a duty signal in response to the discharging-time signal, an on-time of the switching signal, and a switching period of the switching signal. The compensation circuit is coupled to receive the average-current signal and the duty signal for generating a corrected signal. The switching signal is utilized to switch a magnetic device for regulating an output voltage of the power converter. The corrected signal is coupled to generate the switching signal.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: July 9, 2013
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Ying-Chi Chen, Cheng-Sung Chen, Meng-Hsun Yu
  • Patent number: 8482937
    Abstract: A switching control circuit for a switching power converter is provided. The switching control circuit is coupled to a switching device and an auxiliary winding of a transformer. The switching control circuit includes a valley detecting circuit, a valley lock circuit, and a PWM circuit. The valley detecting circuit is coupled to receive a reflected voltage signal from the auxiliary winding of the transformer for outputting a control signal in response to the reflected voltage signal. The valley lock circuit is coupled to receive the control signal for outputting a judging signal in response to the control signal during a first period and a second period following the first period. The PWM circuit outputs a switching signal in response to the judging signal.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: July 9, 2013
    Assignee: System General Corporation
    Inventors: Chao-Chih Lin, Ying-Chieh Su, Jhih-Da Hsu, Chia-Yo Yeh, Wei-Ting Wang
  • Publication number: 20130147452
    Abstract: A control circuit of a power converter is provided. The control circuit comprises a PWM circuit, a sample circuit, and emulation circuit. The PWM circuit generates a switching signal for switching an inductor and generating a switching current of the inductor in response to a current feedback signal. The sample circuit is coupled to sample a switching current signal into a capacitor during an on time of the switching signal. The emulation circuit generates a discharge current couple to discharge the capacitor during an off time of the switching signal for generating the current feedback signal. The switching current signal is correlated to the switching current of the inductor, and the discharge current is generated in response to an input voltage of the inductor, an output voltage of the power converter, and the on time of the switching signal.
    Type: Application
    Filed: December 4, 2012
    Publication date: June 13, 2013
    Applicant: SYSTEM GENERAL CORPORATION
    Inventor: SYSTEM GENERAL CORPORATION
  • Publication number: 20130141056
    Abstract: A control circuit of a power factor correction (PFC) converter is provided. The control circuit includes a pulse width modulation (PWM) circuit, an amplifier, a detection circuit., and a capacitor. The PWM circuit generates a switching signal in response to a loop signal. The amplifier is coupled to generate the loop signal in response to a switching current. The detection circuit generates a mode signal coupled to change output impedance of the amplifier. The capacitor is coupled to the amplifier for loop frequency compensation. The switching signal is coupled to switch an inductor of the PFC power converter and generate the switching current.
    Type: Application
    Filed: July 27, 2012
    Publication date: June 6, 2013
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Ta-Yung YANG, Ying-Chi CHEN, Chien-Tsun HSU, Cheng-Sung CHEN
  • Patent number: 8451632
    Abstract: An exemplary embodiment of a flyback power converter includes a transformer for power transfer, a high-side transistor, a low-side transistor, two diodes, a control circuit, and a high-side drive circuit. The high-side transistor and the low-side transistor are coupled to switch the transformer. The two diodes are coupled to said transformer to circulate energy of leakage inductance of the transformer to an input power rail of the power converter. The control circuit generates a switching signal coupled to control the high-side transistor and the low-side transistor. The high-side drive circuit is coupled to receive the switching signal for driving the high-side transistor. The transformer has an auxiliary winding generating a floating power to provide power supply for said high-side drive circuit.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: May 28, 2013
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Ying-Chieh Su, Jhih-Da Hsu
  • Publication number: 20130094253
    Abstract: The present invention provides a control circuit for a power converter. The control circuit includes a switching circuit, an input-voltage detection circuit and a current-limit threshold. The switching circuit generates a switching signal coupled to switch a transformer of the power converter for regulating an output of the power converter in response to a feedback signal. The input-voltage detection circuit generates a control signal when an input voltage of the power converter is lower than a low-input threshold. The feedback signal is generated in response to the output of the power converter. A maximum duty of the switching signal is increased in response to the control signal. The current-limit threshold is for limiting a maximum value of a switching current flowing through the transformer. The current-limit threshold is increased in response to the control signal. An input of the power converter doesn't connect with electrolytic bulk capacitors.
    Type: Application
    Filed: September 5, 2012
    Publication date: April 18, 2013
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Ta-Yung YANG, Chih-Hsien HSIEH, Jung-Sheng CHEN
  • Patent number: 8400095
    Abstract: A speed-control circuit for a BLDC motor is provided. The speed-control circuit includes a pulse generator, a current source circuit, a filter circuit, an error amplification circuit and a PWM circuit. The pulse generator detects a speed signal of the BLDC motor to generate a pulse signal. The filter circuit is coupled to the current source circuit to generate an average signal. The error amplification circuit receives the average signal and a speed-reference signal for generating a speed-control signal. The PWM circuit generates a switching signal to drive the BLDC motor in response to the speed-control signal. A pulse width of the switching signal is determined by the speed-control signal.
    Type: Grant
    Filed: July 7, 2010
    Date of Patent: March 19, 2013
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Ta-Hsu Huang, Chung-Hui Yeh, Pei-Sheng Tsu, Yi-Min Hsu, Shih-Jen Yang
  • Publication number: 20130063112
    Abstract: A controller of a power converter is provided. The controller includes a feedback circuit, an output circuit, and a clamping circuit. The feedback circuit generates a feedback signal in accordance with output of the power converter. The output circuit generates a switching signal in accordance with the feedback signal for regulating the output of the power converter. The clamping circuit limits the feedback signal under a first level for a first load condition and limits the feedback signal under a second level for a second load condition. The clamping circuit includes a timer circuit. The timer circuit determines a slew rate of the feedback signal for increasing the feedback signal from the first level to the second level, and the second level is higher than the first level.
    Type: Application
    Filed: January 5, 2012
    Publication date: March 14, 2013
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Ta-Yung YANG, Keun-Eui HONG, Jung-Sheng CHEN, Juh-Yun KIM
  • Publication number: 20130049812
    Abstract: A high-side switch control circuit is provided. The high-side switch control circuit includes an on/off transistor, a bias resistor, a zener diode, a level-shifting transistor, and a current source. The on/off transistor operates as a switch. The bias resistor is coupled to turn off the on/off transistor. The zener diode is coupled to clamp the maximum voltage of the on/off transistor. The level-shifting transistor is coupled to turn on the on/off transistor. The current source is coupled to the level-shifting transistor. The current source limits the maximum current of the level-shifting transistor.
    Type: Application
    Filed: February 6, 2012
    Publication date: February 28, 2013
    Applicant: SYSTEM GENERAL CORPORATION
    Inventor: Ta-Yung YANG
  • Publication number: 20130027988
    Abstract: The present invention proposes a switching controller of a flyback power converter. The switching controller includes a switching circuit, a sample-and-hold circuit, a voltage detection circuit, an oscillation circuit, and a comparator. The voltage detection circuit generates a holding signal when a level of an input voltage of the flyback power converter is lower than a low-threshold. The oscillation circuit limits the maximum frequency of switching signal. The maximum frequency is increased in response to a decrement of a modulation signal. The modulation signal correlated with a level of the input voltage is used to generate a control signal when the level of the input voltage is lower than an ultra-low-threshold. The control signal is enabled to operate the flyback power converter in continuous current mode operation. Therefore, an input capacitor can be eliminated and manufacturing cost is saved.
    Type: Application
    Filed: January 12, 2012
    Publication date: January 31, 2013
    Applicant: SYSTEM GENERAL CORPORATION
    Inventors: Ta-Yung YANG, Li LIN, Chao-Chih LIN
  • Patent number: 8358518
    Abstract: A switching regulator of a power converter is provided and includes a feedback-input circuit, a programming circuit, and a peak-current-threshold circuit. The feedback-input circuit is coupled to a terminal of the switching regulator for receiving a feedback signal. The feedback-input circuit is operated in a first range of a terminal signal. The programming circuit is coupled to the terminal for generating a programming signal. The programming signal is operated in a second range of the feedback signal. The peak-current-threshold circuit generates a threshold signal in accordance with the programming signal. The feedback signal is coupled to regulate the output of the power converter, and the threshold signal is coupled to limit a peak switching current of the power converter.
    Type: Grant
    Filed: March 29, 2010
    Date of Patent: January 22, 2013
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Shao-Chun Huang, Chen-Hui Chan, Jenn-Yu G. Lin
  • Patent number: 8331114
    Abstract: A dual-switch flyback power converter includes a control circuit to generate a switching signal. A high-side driving circuit includes a pulse generation circuit. The pulse generation circuit generates a pulse-on signal and a pulse-off signal to control two transistors in response to the switching signal. The two transistors further respectively provide a level-shift-on signal and a level-shift-off signal to a comparison circuit to enable/disable a high-side driving signal. Without using a charge pump circuit to power the high-side driving circuit, a floating winding of a transformer is utilized to provide a floating voltage to power the high-side driving circuit, which reduces the cost of the dual-switch flyback power converter and ensures a sufficient high-side driving capability of the high-side driving circuit.
    Type: Grant
    Filed: November 18, 2009
    Date of Patent: December 11, 2012
    Assignee: System General Corporation
    Inventors: Ta-Yung Yang, Shih-Jen Yang, Ming-Hsuan Lee, Jian Chang