Patents Assigned to Taiwan Textile Research Institute
  • Publication number: 20210122880
    Abstract: A poly(amide-imide) is provided. The poly(amide-imide) is represented by formula (1), wherein R is a C6 aryl group, a C7-C8 aralkyl group, a C2-C6 alkoxyalkyl group, or a C3-C18 alkyl group; and 0.02?X?0.5.
    Type: Application
    Filed: December 31, 2020
    Publication date: April 29, 2021
    Applicant: Taiwan Textile Research Institute
    Inventors: Shang-Chih Chou, Shao-Yen Chang, Chun-Hung Lin
  • Patent number: 10975202
    Abstract: A poly(amide-imide) is provided. The poly(amide-imide) is represented by formula (1), wherein R is a C6 aryl group, a C7-C8 aralkyl group, a C2-C6 alkoxyalkyl group, or a C3-C18 alkyl group; and 0.02?X?0.5.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 13, 2021
    Assignee: Taiwan Textile Research Institute
    Inventors: Shang-Chih Chou, Shao-Yen Chang, Chun-Hung Lin
  • Publication number: 20210102321
    Abstract: A meltblown nonwoven fabric is provided. The meltblown nonwoven fabric includes a plurality of meltblown fibers adhered to each other. The material of each of the meltblown fibers includes a polyetherimide and a polyimide, or the material of each of the meltblown fibers includes a polyphenylene sulfide and a polyimide, wherein the glass transition temperature of the polyimide is between 128° C. and 169° C., the 10% thermogravimetric loss temperature of the polyimide is between 490° C. and 534° C., and when the polyimide is dissolved in N-methyl-2-pyrrolidone and the solid content of the polyimide is 30 wt %, the viscosity of the polyimide is between 100 cP and 250 cP.
    Type: Application
    Filed: February 5, 2020
    Publication date: April 8, 2021
    Applicant: Taiwan Textile Research Institute
    Inventors: Shang-Chih Chou, Shao-Yen Chang, Chun-Hung Lin, Yuan-Pei Liao, Yi-Cang Lai
  • Publication number: 20210062371
    Abstract: A fabric is provided. The fabric includes a base cloth and a coating layer. The coating layer is disposed on the base cloth, and the coating layer includes a resin matrix and a temperature-regulating powder, wherein the content of the temperature-regulating powder ranges from 20 to 80 parts by weight based on 100 parts by weight of the resin matrix, and the material of the temperature-regulating powder includes modified polyaniline.
    Type: Application
    Filed: August 24, 2020
    Publication date: March 4, 2021
    Applicant: Taiwan Textile Research Institute
    Inventors: Sheng-Mao Tseng, Chi-Shu Wei
  • Publication number: 20210017382
    Abstract: A method of preparing a thermoplastic composition is provided. The method includes the following steps. A polyetherimide or a polyphenylene sulfide is provided. A polyimide is provided, wherein the glass transition temperature of the polyimide is between 128° C. and 169° C., the 10% thermogravimetric loss temperature of the polyimide is between 490° C. and 534° C., and when the polyimide is dissolved in N-methyl-2-pyrrolidone and the solid content of the polyimide is 30 wt %, the viscosity of the polyimide is between 100 cP and 250 cP. A melt process is performed to mix the polyetherimide and the polyimide or mix the polyphenylene sulfide and the polyimide to form a thermoplastic composition. Further, a thermoplastic composition is also provided.
    Type: Application
    Filed: September 12, 2019
    Publication date: January 21, 2021
    Applicant: Taiwan Textile Research Institute
    Inventors: Shang-Chih Chou, Shao-Yen Chang, Chun-Hung Lin, Yuan-Pei Liao, Yi-Cang Lai
  • Publication number: 20210010165
    Abstract: A temperature-responsive material having a structure represented by formula (I): is provided, where in formula (I), X has a structure represented by formula (i) or formula (ii): x and y are in a molar ratio of 9:1 to 1:3, n is an integer of 7 to 120, and m is an integer of 10 to 1,000.
    Type: Application
    Filed: March 31, 2020
    Publication date: January 14, 2021
    Applicant: Taiwan Textile Research Institute
    Inventors: Wen-Hsiang Chen, Chun-Hung Lin
  • Publication number: 20200376446
    Abstract: A preparation method of separation membrane is provided. First, a polyimide composition including a dissolvable polyimide, a crosslinking agent, and a solvent is provided. The dissolvable polyimide is represented by formula 1: wherein B is a tetravalent organic group derived from a tetracarboxylic dianhydride containing aromatic group, A is a divalent organic group derived from a diamine containing aromatic group, A? is a divalent organic group derived from a diamine containing aromatic group and carboxylic acid group, and 0.1?X?0.9. The crosslinking agent is an aziridine crosslinking agent, an isocyanate crosslinking agent, an epoxy crosslinking agent, a diamine crosslinking agent, or a triamine crosslinking agent. A crosslinking process is performed on the polyimide composition. The polyimide composition which has been subjected to the crosslinking process is coated on a substrate to form a polyimide membrane. A dry phase inversion process is performed on the polyimide membrane.
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Applicant: Taiwan Textile Research Institute
    Inventors: Shang-Chih Chou, Chun-Hung Chen, Chun-Hung Lin, Kueir-Rarn Lee
  • Patent number: 10851206
    Abstract: A modified nylon 66 fiber including a first repeating unit derived from adipic acid and hexamethylenediamine, a second monomer unit derived from a diacid or a diamine having a long carbon chain, a third monomer unit derived from a diacid or a diamine having a aromatic ring, and a fourth monomer unit derived from a cyclic diacid or a cyclic diamine is provided. The second monomer unit has 6 to 36 carbon atoms. The third monomer unit has 8 to 14 carbon atoms. The fourth monomer unit has 6 to 10 carbon atoms. Based on a total weight of the modified nylon 66 fiber, a content of the first repeating unit is 78 wt % to 94.8 wt %, a content of the second monomer unit is 0.1 wt % to 1 wt %, a content of the third monomer unit is 5 wt % to 20 wt %, a content of the fourth monomer unit is 0.1 wt % to 1 wt %.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: December 1, 2020
    Assignee: Taiwan Textile Research Institute
    Inventors: Tzu-Chung Lu, Chin-Wen Chen, Wei-Hsiang Lin, Chao-Huei Liu, Po-Hsun Huang, Wei-Jen Lai
  • Patent number: 10792621
    Abstract: A preparation method of separation membrane is provided. First, a polyimide composition including a dissolvable polyimide, a crosslinking agent, and a solvent is provided. The dissolvable polyimide is represented by formula 1: wherein B is a tetravalent organic group derived from a tetracarboxylic dianhydride containing aromatic group, A is a divalent organic group derived from a diamine containing aromatic group, A? is a divalent organic group derived from a diamine containing aromatic group and carboxylic acid group, and 0.1?X?0.9. The crosslinking agent is an aziridine crosslinking agent, an isocyanate crosslinking agent, an epoxy crosslinking agent, a diamine crosslinking agent, or a triamine crosslinking agent. A crosslinking process is performed on the polyimide composition. The polyimide composition which has been subjected to the crosslinking process is coated on a substrate to form a polyimide membrane. A dry phase inversion process is performed on the polyimide membrane.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: October 6, 2020
    Assignee: Taiwan Textile Research Institute
    Inventors: Shang-Chih Chou, Chun-Hung Chen, Chun-Hung Lin, Kueir-Rarn Lee
  • Patent number: 10769508
    Abstract: A radio frequency yarn module includes a first flexible substrate, a radio frequency assembly, and a first packaging adhesive. The first flexible substrate is strip shaped and has a thickness ranging from 40 ?m to 60 ?m. The radio frequency assembly is disposed on the first flexible substrate and includes a first conductive layer, a second conductive layer, and a radio frequency chip. Each of the first and the second conductive layers is disposed on the first flexible substrate and has a thickness ranging from 3 ?m to 10 ?m. Extending paths of the first and the second conductive layers are respectively same as extending paths of a first and a second portions of the first flexible substrate. The radio frequency chip is disposed on the first conductive layer and the second conductive layer. The first packaging adhesive covers the radio frequency assembly.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: September 8, 2020
    Assignee: TAIWAN TEXTILE RESEARCH INSTITUTE
    Inventors: Jie-Shen Tsai, Chien-Lung Shen
  • Publication number: 20200238220
    Abstract: A preparation method of separation membrane is provided. First, a polyimide composition including a dissolvable polyimide, a crosslinking agent and a solvent is provided. The dissolvable polyimide is represented by formula 1: wherein B is a tetravalent organic group derived from a tetracarboxylic dianhydride containing aromatic group, A is a divalent organic group derived from a diamine containing aromatic group, A? is a divalent organic group derived from a diamine containing aromatic group and carboxylic acid group, and 0.1?X?0.9. The crosslinking agent is an aziridine crosslinking agent, an isocyanate crosslinking agent, an epoxy crosslinking agent, a diamine crosslinking agent, or a triamine crosslinking agent. A crosslinking process is performed on the polyimide composition. The polyimide composition which has been subjected to the crosslinking process is coated on a substrate to form a polyimide membrane. A wet phase inversion process is performed on the polyimide membrane.
    Type: Application
    Filed: April 16, 2020
    Publication date: July 30, 2020
    Applicant: Taiwan Textile Research Institute
    Inventors: Shang-Chih Chou, Chun-Hung Chen, Chun-Hung Lin, Kueir-Rarn Lee
  • Publication number: 20200216699
    Abstract: A digital printing ink including chitosan, a surfactant, and a balance of a solvent is provided. The chitosan has a weight-average molecular weight of 200,000 to 300,000. The surfactant includes a polyglycol, an ethylene oxide, or a combination thereof. The digital printing ink has a viscosity of 2 cps to 12 cps, a surface tension of 28 dyne/cm to 40 dyne/cm, and a pH value of 6 to 8. A content of the chitosan is 5 wt. % to 10 wt. %, and a content of the surfactant is 2 wt. % to 5 wt. %, based on the total weight of the digital printing ink.
    Type: Application
    Filed: March 17, 2020
    Publication date: July 9, 2020
    Applicant: Taiwan Textile Research Institute
    Inventors: Chia-Yi Lin, Po-Chuen Lin
  • Patent number: 10675590
    Abstract: A preparation method of separation membrane is provided. First, a polyimide composition including a dissolvable polyimide, a crosslinking agent and a solvent is provided. The dissolvable polyimide is represented by formula 1: wherein B is a tetravalent organic group derived from a tetracarboxylic dianhydride containing aromatic group, A is a divalent organic group derived from a diamine containing aromatic group, A? is a divalent organic group derived from a diamine containing aromatic group and carboxylic acid group, and 0.1?X?0.9. The crosslinking agent is an aziridine crosslinking agent, an isocyanate crosslinking agent, an epoxy crosslinking agent, a diamine crosslinking agent, or a triamine crosslinking agent. A crosslinking process is performed on the polyimide composition. The polyimide composition which has been subjected to the crosslinking process is coated on a substrate to form a polyimide membrane. A wet phase inversion process is performed on the polyimide membrane.
    Type: Grant
    Filed: March 29, 2017
    Date of Patent: June 9, 2020
    Assignee: Taiwan Textile Research Institute
    Inventors: Shang-Chih Chou, Chun-Hung Chen, Chun-Hung Lin, Kueir-Rarn Lee
  • Patent number: 10640667
    Abstract: A digital printing ink including a moisture absorption agent, a surfactant, an antifreeze agent, and a balance of a solvent is provided. The moisture absorption agent includes a block copolyester-ether. The surfactant includes a acrylic block copolymer. The antifreeze agent includes glycol. The digital printing ink has a viscosity of 2 cps to 12 cps, a surface tension of 28 dyne/cm to 40 dyne/cm, and a pH value of 6 to 8. A content of the moisture absorption agent is 5 wt. % to 11 wt. %, a content of the surfactant is 3 wt. % to 10 wt. %, and a content of the antifreeze agent is 3 wt. % to 5 wt. %, based on the total weight of the digital printing ink.
    Type: Grant
    Filed: December 7, 2018
    Date of Patent: May 5, 2020
    Assignee: Taiwan Textile Research Institute
    Inventors: Chia-Yi Lin, Po-Chuen Lin
  • Publication number: 20200123403
    Abstract: A digital printing ink including a moisture absorption agent, a surfactant, an antifreeze agent, and a balance of a solvent is provided. The moisture absorption agent includes a block copolyester-ether. The surfactant includes a acrylic block copolymer. The antifreeze agent includes glycol. The digital printing ink has a viscosity of 2 cps to 12 cps, a surface tension of 28 dyne/cm to 40 dyne/cm, and a pH value of 6 to 8. A content of the moisture absorption agent is 5 wt. % to 11 wt. %, a content of the surfactant is 3 wt. % to 10 wt. %, and a content of the antifreeze agent is 3 wt. % to 5 wt. %, based on the total weight of the digital printing ink.
    Type: Application
    Filed: December 7, 2018
    Publication date: April 23, 2020
    Applicant: Taiwan Textile Research Institute
    Inventors: Chia-Yi Lin, Po-Chuen Lin
  • Patent number: 10625216
    Abstract: A polyimide mixture including a polyimide and an amino-containing silica particle is provided. The polyimide includes a repeating unit represented by formula 1: wherein Ar includes and A includes The amino-containing silica particle is mixed with the polyimide, and is obtained by the hydrolysis condensation reaction of an alkoxysilane shown in formula 2 and an alkoxysilane shown in formula 3 in the presence of a catalyst: Si(OR1)4??formula 2, (NH2—Y)m—Si(OR2)4-m??formula 3, wherein in formula 2, R1 is a C1-C10 alkyl group; and in formula 3, Y is a C1-C10 alkyl group or a C2-C10 alkenyl group, R2 is a C1-C10 alkyl group, and m is an integer of 1 to 3.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: April 21, 2020
    Assignee: Taiwan Textile Research Institute
    Inventors: Shang-Chih Chou, Chun-Hung Chen, Chien-Chieh Hu
  • Publication number: 20200095707
    Abstract: A preparation method of a fiber is provided. In the preparation method of the fiber, a polymer is dissolved in a mixing solution of an ionic liquid and a salt to form a spinning viscose, wherein the salt includes KCl, KBr, KOAc, NaBr, ZnCl2 or a combination thereof. Afterwards, the spinning viscose is used as a material to perform a spinning process so as to form a fiber.
    Type: Application
    Filed: November 24, 2019
    Publication date: March 26, 2020
    Applicant: Taiwan Textile Research Institute
    Inventors: Hung-Yu Chao, Kuo-Liang Liu, Yu-Deng Lin
  • Publication number: 20200055988
    Abstract: A poly(amide-imide) is provided. The poly(amide-imide) is represented by formula (1), wherein R is a C6 aryl group, a C7-C8 aralkyl group, a C2-C6 alkoxyalkyl group, or a C3-C18 alkyl group; and 0.02?X?0.5.
    Type: Application
    Filed: February 25, 2019
    Publication date: February 20, 2020
    Applicant: Taiwan Textile Research Institute
    Inventors: Shang-Chih Chou, Shao-Yen Chang, Chun-Hung Lin
  • Publication number: 20190185623
    Abstract: A modified nylon 66 fiber including a first monomer derived from adipic acid and hexamethylenediamine, a second monomer derived from a diacid or a diamine having a long carbon chain, a third monomer derived from a diacid or a diamine having a aromatic ring, and a fourth monomer derived from a cyclic diacid or a cyclic diamine is provided. The second monomer has 6 to 36 carbon atoms. The third monomer has 8 to 14 carbon atoms. The fourth monomer has 6 to 10 carbon atoms. Based on a total weight of the modified nylon 66 fiber, a content of the first monomer is 78 wt % to 94.8 wt %, a content of the second monomer is 0.1 wt % to 1 wt %, a content of the third monomer is 5 wt % to 20 wt %, a content of the fourth monomer is 0.1 wt % to 1 wt %.
    Type: Application
    Filed: December 6, 2018
    Publication date: June 20, 2019
    Applicant: Taiwan Textile Research Institute
    Inventors: Tzu-Chung Lu, Chin-Wen Chen, Wei-Hsiang Lin, Chao-Huei Liu, Po-Hsun Huang, Wei-Jen Lai
  • Patent number: 10132013
    Abstract: A conductive textile is provided, including warp and weft, and the warp and the weft are interwoven. The warp includes a signal-transmitting unit, an electrical connecting unit, and at least a first warp conductive fiber. The signal-transmitting unit consists of a first signal-transmitting cable and a second signal-transmitting cable, which are intertwined. Each of the first signal-transmitting cable and the second signal-transmitting cable includes a central conductive fiber and an outer insulating layer. The electrical connecting unit consists of a first power cable and a second power cable. The first warp conductive fiber is disposed between the signal-transmitting unit and the electrical connecting unit. The weft includes a weft conductive fiber.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: November 20, 2018
    Assignee: TAIWAN TEXTILE RESEARCH INSTITUTE
    Inventors: Chien-Lung Shen, Kun-Chuan Tsai, Chien-Fa Tang, Fen-Ling Chen