Patents Assigned to TC1 LLC
  • Patent number: 10894116
    Abstract: At least some embodiments of the disclosure may advantageously limit bleeding and the occurrence of blood leaks after heart pump implantation. In some embodiments, a base may be provided that includes a flexible layer mechanically coupled with a conduit. The flexible layer may be coupled with the proximal end of the conduit. The conduit may be configured to receive a cannula of the heart pump therethrough. The outer surface of the conduit may be configured to engage a surface of the heart formed after coring the heart. The conduit may be metal and may have a flared and/or beveled distal end. The conduit may be a flexible material. A distal flexible layer may be provided at a distal end of the conduit that is configured to engage with an inner surface of the heart.
    Type: Grant
    Filed: August 21, 2017
    Date of Patent: January 19, 2021
    Assignee: TC1 LLC
    Inventors: John Duc Nguyen, Huy Ngo, Carine Hoarau, Fabian Franco
  • Publication number: 20210008262
    Abstract: Blood pump devices having improved rotary seals for sealing a bearing assembly supporting a rotor provided herein. Such rotary seals are particularly suited for use in blood pump devices that include rotors having cantilevered supported through a sealed mechanical bearing disposed outside a blood flow path of the device to avoid thrombus formation caused by blood contact with the bearing. The rotary seal can include a first and second face seal that are preloaded with a deflectable compliance member incorporated into the pump housing or a pair of magnets. Such rotary seals can instead or further utilize tight fitment between components or a bio-absorbable fill material to seal an interface between the rotor shaft and pump housing to seal the bearing assembly from fluid flowing through the pump.
    Type: Application
    Filed: August 13, 2020
    Publication date: January 14, 2021
    Applicant: TC1 LLC
    Inventors: William V. Hodges, Ian McEachern, Eric T. Lee
  • Patent number: 10888645
    Abstract: A ventricular assist device is disclosed. The ventricular assist device may include a centrifugal pump and a controller. The controller may be configured to cause the centrifugal pump to operate at a first speed above a predetermined flow rate. The controller may also be configured to cause the centrifugal pump to operate at a second speed below the predetermined flow rate, wherein the predetermined flowrate is indicative of a crossover point between systole and diastole phases of a person's cardiac cycle.
    Type: Grant
    Filed: October 29, 2018
    Date of Patent: January 12, 2021
    Assignee: TC1 LLC
    Inventors: Alexander Medvedev, Muhammad Sami
  • Publication number: 20210001026
    Abstract: A blood pump system includes a first implantable housing, an implantable blood pump independent from the first implantable housing, and a percutaneous extension. The first implantable housing includes a rechargeable power storage device. The implantable blood pump supplements the pumping function of a heart. The rechargeable power storage device supplies electrical power to the implantable blood pump. The percutaneous extension is coupled to the rechargeable power storage device and adapted to traverse the skin. The percutaneous extension is configured to releasably connect to an external power supply adapted to provide power for recharging or supplementing the rechargeable power storage device to power the implantable blood pump.
    Type: Application
    Filed: September 22, 2020
    Publication date: January 7, 2021
    Applicant: TC1 LLC
    Inventors: Charles Dague, Kevin Bourque
  • Publication number: 20210001025
    Abstract: The invention generally relates to heart pump systems. In some embodiments, a pressure sensor is provided with a heart pump, either at the inflow or the outflow of the blood pump. The heart pump may further include a flow estimator based on a rotor drive current signal delivered to the rotor. Based on the rotor drive current signal, a differential pressure across the pump may be calculated. The differential pressure in combination with the pressure measurements from the pressure sensor may be used to calculate pressure on the opposite side of the pump from the pressure sensor. In some embodiments, the pressure sensor is located at the outflow of the pump and the pump is coupled with the left ventricle. The differential pressure and pressure measurement may be used to calculate a left ventricular pressure waveform of the patient. With such a measurement, other physiological parameters may be derived.
    Type: Application
    Filed: September 22, 2020
    Publication date: January 7, 2021
    Applicant: TC1 LLC
    Inventors: Daniel I. Harjes, Kathryn B. Frederick, Eric Lee
  • Patent number: 10881772
    Abstract: A mechanical circulatory assist system includes a continuous-flow pump and a controller. The pump is implantable to assist blood flow from the left ventricle to the aorta The controller is operable to control a rotation speed of the pump over an operational cycle. The operational cycle includes a first segment over which the ventricular assist device is operated at first rotation speed, a second segment over which the rotation speed of the ventricular assist device is decreased from the first rotation speed to a second rotation speed, a third segment over which the ventricular assist device is operated at the second rotation speed, and a fourth segment over which the rotation speed of the ventricular assist device is increased from the second rotation speed. A contraction of the left ventricle that opens and closes the native aortic valve occurs during the third segment.
    Type: Grant
    Filed: August 6, 2018
    Date of Patent: January 5, 2021
    Assignee: TC1 LLC
    Inventor: Kevin Bourque
  • Publication number: 20200397964
    Abstract: Systems, methods, and devices for securing a driveline to a portion of skin are disclosed herein. The driveline can connect an external controller to an implantable blood pump. The skin anchor can include a driveline capture portion. The driveline capture portion can receive the driveline and fix a position of the driveline with respect to the driveline capture portion. The driveline capture portion includes: a driveline receiver that can receive the driveline; and a driveline anchor that can engage the driveline to fix the position of the driveline with respect to the driveline receiver. The skin anchor can include a force distribution portion. The force distribution portion can engage a portion of skin and fix a position of the portion of skin with respect to the force distribution portion.
    Type: Application
    Filed: September 3, 2020
    Publication date: December 24, 2020
    Applicant: TC1 LLC
    Inventors: John Duc Nguyen, John Donald Hill, Fabian Franco, Chris Eskildsen, David Gary Eldridge, Carine Hoarau, Yi-Ren Woo, John J. Hagerty, JR., Pete Cardamone
  • Patent number: 10873220
    Abstract: Methods and apparatus for wireless power transfer and communications are provided. In one embodiment, a wireless power transfer system comprises a transmit resonator configured to transmit wireless power, a receive resonator configured to receive the transmitted wireless power from the transmit resonator, a medical device configured to receive power from the receive resonator, a controller configured to change an operating parameter of the medical device resulting in a change to a sonic signature of the medical device, and a listening device configured to determine an intended communication from the implanted medical device or the implanted receive resonator based on the change to the sonic signature coming from the implanted medical device.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: December 22, 2020
    Assignee: TC1 LLC
    Inventors: John Freddy Hansen, Ian Coll McEachern
  • Publication number: 20200390949
    Abstract: The invention generally relates to improved medical blood pump devices, systems, and methods. For example, blood pumps may be provided that include a housing defining a blood flow path between an inlet and an outlet. A rotor may be positioned in the blood flow path. A motor stator may be driven to rotate the rotor to provide the blood flow through the pump. Axial and/or tilt stabilization components may be provided to increase an axial and/or tilt stabilization of the rotor within the blood flow path. In some embodiments, biasing forces are provided that urge the rotor toward a bearing component. The biasing force may be provided by adjusting drive signals of the motor stator. Additionally, or alternatively, one or more magnets (e.g., permanent/stator magnets) may be provided to bias the rotor in the upstream and/or downstream direction (e.g., toward a bearing (chamfer, step, conical), or the like).
    Type: Application
    Filed: September 1, 2020
    Publication date: December 17, 2020
    Applicant: TC1 LLC
    Inventors: Onur Dur, Kevin Bourque
  • Patent number: 10864308
    Abstract: Sensors for catheter pumps are disclosed herein. The catheter pump can include a catheter assembly comprising a catheter and a cannula coupled to a distal portion of the catheter. The cannula can have a proximal port for permitting the flow of blood therethrough. The catheter assembly can include a sensor to be disposed near the proximal port. A processing unit can be programmed to process a signal detected by the sensor. The processing unit can comprise a computer-readable set of rules to evaluate the signal to determine a position of the cannula relative to an aortic valve of a patient.
    Type: Grant
    Filed: June 27, 2018
    Date of Patent: December 15, 2020
    Assignee: TC1 LLC
    Inventors: Paul F. Muller, Keif M. Fitzgerald, Richard L. Keenan, Veronica J. Neiman
  • Patent number: 10865801
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: December 15, 2020
    Assignees: TC1 LLC, THE PENN STATE RESEARCH FOUNDATION
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Patent number: 10856748
    Abstract: A method for synchronizing operation of a heart assist pump device to a patient's cardiac cycle includes obtaining a signal from a motor of a heart assist pump device and filtering the signal to remove noise. The method also includes determining a speed synchronization start point at which time the motor of the heart assist pump device will begin a change in speed of operation based on the filtered signal. The method further includes modulating a speed of the motor of the heart assist pump device to a target speed at the speed synchronization start point, thereby synchronizing the change in speed of operation with a patient's cardiac cycle.
    Type: Grant
    Filed: December 13, 2019
    Date of Patent: December 8, 2020
    Assignee: TC1 LLC
    Inventors: Alexander Medvedev, Shunzhou Yu, Ren You
  • Patent number: 10857273
    Abstract: Blood pump devices having improved rotary seals for sealing a bearing assembly supporting a rotor provided herein. Such rotary seals are particularly suited for use in blood pump devices that include rotors having cantilevered supported through a sealed mechanical bearing disposed outside a blood flow path of the device to avoid thrombus formation caused by blood contact with the bearing. The rotary seal can include a first and second face seal that are preloaded with a deflectable compliance member incorporated into the pump housing or a pair of magnets. Such rotary seals can instead or further utilize tight fitment between components or a bio-absorbable fill material to seal an interface between the rotor shaft and pump housing to seal the bearing assembly from fluid flowing through the pump.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: December 8, 2020
    Assignee: TC1 LLC
    Inventors: William V. Hodges, Ian McEachern, Eric T. Lee
  • Publication number: 20200376184
    Abstract: The present invention generally relates to heart treatment systems. In some aspects, methods and systems are provided for facilitating communication between implanted devices. For example, an implantable cardiac rhythm management device may be configured to communicate with an implantable blood pump. The implantable cardiac rhythm management device may deliver heart stimulation rate information in addition to information associated with any detected abnormalities in heart function. In response, the pump may be configured to adjust pumping by the pump to better accommodate a patient's particular needs.
    Type: Application
    Filed: August 18, 2020
    Publication date: December 3, 2020
    Applicant: TC1 LLC
    Inventors: Daniel I. Harjes, John Freddy Hansen, Joseph C. Stark, III, Ghazal Anvar Mauro, Eric Lee, Justin A. Callaway, Onur Dur
  • Publication number: 20200360584
    Abstract: Systems, assemblies, and related modules for connecting components of medical devices employ connector cables with electrical conductors and optical fibers. A connector assembly for coupling a battery module with a medical system including an implanted or worn medical device includes an input connector and an output connector. The input connector includes metal contact plates, has no moving parts, and is sealed to prevent water or dust ingression into the housing. The output connector includes metal pins to electrically couple to the metal plates of the input connector, a connector cable including electrical conductors coupled to the metal pins configured to transmit electrical power and an optical fiber configured to transmit data, and a latching mechanism disposed at an end of the output connector configured to physically attach the output connector to the housing. The cable body has a substantially flat cross-section.
    Type: Application
    Filed: August 7, 2020
    Publication date: November 19, 2020
    Applicant: TC1 LLC
    Inventors: Kevin Conyers, Jaime Arturo Romero
  • Patent number: 10835655
    Abstract: A blood pump system includes a first implantable housing, an implantable blood pump independent from the first implantable housing, and a percutaneous extension. The first implantable housing includes a rechargeable power storage device. The implantable blood pump supplements the pumping function of a heart. The rechargeable power storage device supplies electrical power to the implantable blood pump. The percutaneous extension is coupled to the rechargeable power storage device and adapted to traverse the skin. The percutaneous extension is configured to releasably connect to an external power supply adapted to provide power for recharging or supplementing the rechargeable power storage device to power the implantable blood pump.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: November 17, 2020
    Assignee: TC1 LLC
    Inventors: Charles Dague, Kevin Bourque
  • Patent number: 10835654
    Abstract: The invention generally relates to heart pump systems. In some embodiments, a pressure sensor is provided with a heart pump, either at the inflow or the outflow of the blood pump. The heart pump may further include a flow estimator based on a rotor drive current signal delivered to the rotor. Based on the rotor drive current signal, a differential pressure across the pump may be calculated. The differential pressure in combination with the pressure measurements from the pressure sensor may be used to calculate pressure on the opposite side of the pump from the pressure sensor. In some embodiments, the pressure sensor is located at the outflow of the pump and the pump is coupled with the left ventricle. The differential pressure and pressure measurement may be used to calculate a left ventricular pressure waveform of the patient. With such a measurement, other physiological parameters may be derived.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: November 17, 2020
    Assignee: TC1 LLC
    Inventors: Daniel I. Harjes, Kathryn B. Frederick, Eric Lee
  • Publication number: 20200345908
    Abstract: Various “contactless” bearing mechanisms including hydrodynamic and magnetic bearings are provided for a rotary pump as alternatives to mechanical contact bearings. In one embodiment, a pump apparatus includes a pump housing defining a pumping chamber. The housing has a spindle extending into the pumping chamber. A spindle magnet assembly includes first and second magnets disposed within the spindle. The first and second magnets are arranged proximate each other with their respective magnetic vectors opposing each other. The lack of mechanical contact bearings enables longer life pump operation and less damage to working fluids such as blood.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Applicant: TC1 LLC
    Inventors: Richard K. Wampler, David M. Lancisi
  • Publication number: 20200345913
    Abstract: Systems and related methods for supplying power to a medical device employ serially-connectable portable batteries. A method of supplying electrical power to a medical device includes discharging a first external battery to output electrical power to a second external battery. Distribution of the electrical power received by the second external battery is controlled to simultaneously charge the second external battery and output electrical power from the second external battery to supply electrical power to the medical device.
    Type: Application
    Filed: June 23, 2020
    Publication date: November 5, 2020
    Applicant: TC1 LLC
    Inventors: Brian Kimball, Joseph C. Stark, III, Peter Thatcher, John Freddy Hansen, Peter Andriola, Carine Hoarau, Jaime Arturu Romero, Jesse Gage
  • Publication number: 20200345909
    Abstract: The present invention provides a rotary blood pump with both an attractive magnetic axial bearing and a hydrodynamic bearing. In one embodiment according to the present invention, a rotary pump includes an impeller assembly supported within a pump housing assembly by a magnetic axial bearing and a hydrodynamic bearing. The magnetic axial bearing includes at least two magnets oriented to attract each other. One magnet is positioned in the spindle of the pump housing while the other is disposed within the rotor assembly, proximate to the spindle. In this respect, the two magnets create an attractive axial force that at least partially maintains the relative axial position of the rotor assembly. The hydrodynamic bearing is formed between sloping surfaces that form tight clearances below the rotor assembly.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Applicant: TC1 LLC
    Inventors: Richard K. Wampler, David M. Lancisi