Patents Assigned to TC1 LLC
  • Patent number: 10804744
    Abstract: The present disclosure provides systems and methods for controlling wireless power transfer systems. A wireless power transfer system includes a transmitter driven by a power source and a transmit controller, wherein the transmitter is configured to control delivery of wireless power, and a receiver inductively coupled to the transmitter, the receiver configured to receive the wireless power from the transmitter and deliver the received wireless power to a load. The receiver includes receiver electronics configured to determine a Thevenin equivalent impedance of the wireless power transfer system, determine a Thevenin equivalent source voltage of the wireless power transfer system, and control, based on the determined Thevenin equivalent impedance and the determined Thevenin equivalent source voltage, an ideal source voltage of the receiver to vary the amount of the wireless power transferred from the transmitter to the receiver.
    Type: Grant
    Filed: November 21, 2018
    Date of Patent: October 13, 2020
    Assignee: TC1 LLC
    Inventor: Ethan Falk Petersen
  • Patent number: 10786610
    Abstract: A catheter pump assembly is provided that includes a proximal a distal portion, a catheter body, an impeller, and a flow modifying structure. The catheter body has a lumen that extends along a longitudinal axis between the proximal and distal portions. The impeller is disposed at the distal portion. The impeller includes a blade with a trailing edge. The flow modifying structure is disposed downstream of the impeller. The flow modifying structure has a plurality of blades having a leading edge substantially parallel to and in close proximity to the trailing edge of the blade of the impeller and an expanse extending downstream from the leading edge. In some embodiments, the expanse has a first region with higher curvature and a second region with lower curvature. The first region is between the leading edge and the second region.
    Type: Grant
    Filed: August 10, 2018
    Date of Patent: September 29, 2020
    Assignee: TC1 LLC
    Inventor: Zijing Zeng
  • Publication number: 20200297906
    Abstract: Methods, systems, and devices for a mechanical circulatory support system are disclosed herein. An implantable power supply can be part of a mechanical circulatory support system. The implantable power supply can include one or several energy storage components, a power source, a voltage converter, and an output bus. Power can be provided to the voltage converter from one or both of the power source and the first energy storage component. The voltage converter can convert the voltage of the power from a first voltage to a second voltage and can power the output bus.
    Type: Application
    Filed: June 5, 2020
    Publication date: September 24, 2020
    Applicant: TC1 LLC
    Inventors: Ethan Petersen, Joseph C. Stark
  • Patent number: 10780207
    Abstract: The invention generally relates to improved medical blood pump devices, systems, and methods. For example, blood pumps may be provided that include a housing defining a blood flow path between an inlet and an outlet. A rotor may be positioned in the blood flow path. A motor stator may be driven to rotate the rotor to provide the blood flow through the pump. Axial and/or tilt stabilization components may be provided to increase an axial and/or tilt stabilization of the rotor within the blood flow path. In some embodiments, biasing forces are provided that urge the rotor toward a bearing component. The biasing force may be provided by adjusting drive signals of the motor stator. Additionally, or alternatively, one or more magnets (e.g., permanent/stator magnets) may be provided to bias the rotor in the upstream and/or downstream direction (e.g., toward a bearing (chamfer, step, conical), or the like).
    Type: Grant
    Filed: November 8, 2017
    Date of Patent: September 22, 2020
    Assignee: TC1 LLC
    Inventors: Onur Dur, Kevin Bourque
  • Patent number: 10780209
    Abstract: The present invention generally relates to heart treatment systems. In some aspects, methods and systems are provided for facilitating communication between implanted devices. For example, an implantable cardiac rhythm management device may be configured to communicate with an implantable blood pump. The implantable cardiac rhythm management device may deliver heart stimulation rate information in addition to information associated with any detected abnormalities in heart function. In response, the pump may be configured to adjust pumping by the pump to better accommodate a patient's particular needs.
    Type: Grant
    Filed: March 28, 2018
    Date of Patent: September 22, 2020
    Assignee: TC1 LLC
    Inventors: Daniel I. Harjes, John Freddy Hansen, Joseph C. Stark, III, Ghazal Anvar Mauro, Eric Lee, Justin A. Callaway, Onur Dur
  • Patent number: 10773004
    Abstract: Systems, assemblies, and related modules for connecting components of medical devices employ connector cables with electrical conductors and optical fibers. A connector assembly for coupling a battery module with a medical system including an implanted or worn medical device includes an input connector and an output connector. The input connector includes metal contact plates, has no moving parts, and is sealed to prevent water or dust ingression into the housing. The output connector includes metal pins to electrically couple to the metal plates of the input connector, a connector cable including electrical conductors coupled to the metal pins configured to transmit electrical power and an optical fiber configured to transmit data, and a latching mechanism disposed at an end of the output connector configured to physically attach the output connector to the housing. The cable body has a substantially flat cross-section.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: September 15, 2020
    Assignee: TC1 LLC
    Inventors: Kevin Conyers, Jaime Arturo Romero
  • Patent number: 10772623
    Abstract: A coupling system includes an applicator tool and an attachment ring mounted on the applicator tool. Clips are contained within the applicator tool and are deployed through the attachment ring in order to anchor the attachment ring to biological tissue. When deployed, tips of the clips follow a curved trajectory through an annular cuff of the attachment ring and through the underlying tissue. The tips loop back out of the tissue and to a location where they are later trapped or clamped by the attachment ring. While the tips are trapped or clamped, the applicator tool cinches the clips by pulling rear segments of the clips. Thereafter, the applicator tool disconnects from the attachment ring which remains anchored to the tissue and serves as a coupling for a cannula. The cannula can have movable lock members that secure it to the attachment ring.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: September 15, 2020
    Assignee: TC1 LLC
    Inventors: Carine Hoarau, Steven H. Reichenbach, J. Donald Hill, George Hsu, Andrew R. Miller, James Badia, Nina Boiadjieva, Shuo-Hsiu Chang, Philip Haarstad, Olga M. Stanescu, Stephen Kenneth Sundquist
  • Publication number: 20200282121
    Abstract: A circulation assist system measures impeller displacement for use in estimating a blood flow rate related parameter. A circulation assist system includes a blood pump and a controller. The blood pump includes an impeller magnetically supported within a blood flow channel. The blood pump includes one or more sensors configured to generate output indicative of displacement of the impeller along the blood flow channel induced by a blood-flow induced thrust load applied to the impeller. The controller is configured to process the output generated by the one or more sensors to determine the displacement of the impeller along the blood flow channel. The controller is configured to process the determined displacement of the impeller to estimate at least one of the thrust load applied to the impeller, a pressure differential of the blood impelled through the blood flow channel, and a flow rate of blood pumped by the blood pump.
    Type: Application
    Filed: May 27, 2020
    Publication date: September 10, 2020
    Applicant: TC1 LLC
    Inventor: Ethan Falk Petersen
  • Patent number: 10770919
    Abstract: Disclosed are systems for wireless energy transfer including transcutaneous energy transfer. Embodiments are disclosed for user interface (UI) hubs to connect multiple batteries and to output system information to a patient. Embodiments are further disclosed for garments and devices to be worn by a patient requiring treatment. The garments are configured for a desired placement of a transmitter coil relative to a body of the patient and for facilitating patient comfort and quality of life. Methods for manufacturing and using the devices and the systems are also disclosed.
    Type: Grant
    Filed: October 30, 2018
    Date of Patent: September 8, 2020
    Assignee: TC1 LLC
    Inventors: Carine Hoarau, Jeffrey R. Lind, Ian Coll McEachern, John Nguyen, Joanna M. Ignacio, Chalan Koneru, John Curtis Layton, Nicole L. Parks, Leif A. Erickson, Serge Dubeau, Martin A. Leugers, Alex R. Brown
  • Patent number: 10765789
    Abstract: An impeller for a pump is disclosed herein. The impeller can include a hub having a fixed end and a free end. The impeller can also have a plurality of blades supported by the hub. Each blade can have a fixed end coupled to the hub and a free end. The impeller can have a stored configuration and a deployed configuration, the blades in the deployed configuration extending away from the hub, and the blades in the stored configuration being compressed against the hub.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: September 8, 2020
    Assignee: TC1 LLC
    Inventors: Zijing Zeng, Phyllis Yuen, Michael R. Butler
  • Patent number: 10770923
    Abstract: A wireless power transmission device wearable by a subject is provided. The wireless power transmission device includes a power conditioner including a first end and an opposite second end, and a band. The band includes a first end fixedly coupled to the power conditioner first end, a second end fixedly coupled to the power conditioner second end, a body extending between the band first end and the band second end, the body including at least one elastic segment, and a plurality of conductive wires extending along the body to form a plurality of conductive loops, at least one of the plurality of conductive wires electrically coupled to the power conditioner.
    Type: Grant
    Filed: December 17, 2018
    Date of Patent: September 8, 2020
    Assignee: TC1 LLC
    Inventor: John Freddy Hansen
  • Patent number: 10758654
    Abstract: The present invention provides a rotary blood pump with both an attractive magnetic axial bearing and a hydrodynamic bearing. In one embodiment according to the present invention, a rotary pump includes an impeller assembly supported within a pump housing assembly by a magnetic axial bearing and a hydrodynamic bearing. The magnetic axial bearing includes at least two magnets oriented to attract each other. One magnet is positioned in the spindle of the pump housing while the other is disposed within the rotor assembly, proximate to the spindle. In this respect, the two magnets create an attractive axial force that at least partially maintains the relative axial position of the rotor assembly. The hydrodynamic bearing is formed between sloping surfaces that form tight clearances below the rotor assembly.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: September 1, 2020
    Assignee: TC1 LLC
    Inventors: Richard K. Wampler, David M. Lancisi
  • Patent number: 10755368
    Abstract: A system for managing medical equipment is described. The system includes an equipment tracking module to maintain equipment records corresponding to medical equipment that are shipped from a medical equipment manufacturer to a medical center. The system also includes a patient information tracking module to maintain patient records corresponding to patients of the medical center and to associate the patient records with the equipment records when the patients are equipped with the medical equipment. In addition, the system includes a mapping module to provide locations of medical facilities capable of providing support for the medical equipment for patients that have been discharged from the medical center. Other embodiments are also described.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: August 25, 2020
    Assignee: TC1 LLC
    Inventors: Edward Burke, Susan Claire Hopkins, Christopher Davis Parker, James Renteria, Edward Lewis Rieflin, Gilbert Rivas
  • Patent number: 10751454
    Abstract: Various “contactless” bearing mechanisms including hydrodynamic and magnetic bearings are provided for a rotary pump as alternatives to mechanical contact bearings. In one embodiment, a pump apparatus includes a pump housing defining a pumping chamber. The housing has a spindle extending into the pumping chamber. A spindle magnet assembly includes first and second magnets disposed within the spindle. The first and second magnets are arranged proximate each other with their respective magnetic vectors opposing each other. The lack of mechanical contact bearings enables longer life pump operation and less damage to working fluids such as blood.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: August 25, 2020
    Assignee: TC1 LLC
    Inventors: Richard K. Wampler, David M. Lancisi
  • Patent number: 10737007
    Abstract: A patient adapter for connecting a driveline cable between an implantable blood pump and a controller. The patient adapter provides a sufficiently large form factor to make connecting ends of a driveline cable easy for patients who lack dexterity or have unclear vision. The patient adapter includes an adapter body that defines a central lumen that extends through an entire length of the adapter body. The central lumen is configured to receive an end of a percutaneous end connector of the driveline cable and an end of a controller end connector of the driveline cable. The patient adapter includes a first mating feature configured to engage a corresponding feature of the percutaneous end connector and a second mating feature configured to engage a corresponding feature of the controller end connector. A thickness of the adapter body is greatest at a position proximate the controller end connector.
    Type: Grant
    Filed: April 30, 2018
    Date of Patent: August 11, 2020
    Assignee: TC1 LLC
    Inventors: Julien Duhamel, John Mark Di Paola, Dustin Roelle, Dmitry Protsenko
  • Patent number: 10737005
    Abstract: A catheter pump is disclosed. The catheter pump can include an impeller and a catheter body having a lumen therethrough. The catheter pump can also include a drive shaft disposed inside the catheter body. A motor assembly can include a chamber. The motor assembly can include a rotor disposed in the at least a portion of the chamber, the rotor mechanically coupled with a proximal portion of the drive shaft such that rotation of the rotor causes the drive shaft to rotate. The motor assembly can also comprise a stator assembly disposed about the rotor. The motor assembly can also include a heat exchanger disposed about the stator assembly, the heat exchanger may be configured to direct heat radially outward away from the stator assembly, the rotor, and the chamber.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: August 11, 2020
    Assignee: TC1 LLC
    Inventors: Adam R. Tanner, Michael R. Butler, Todd Jenkins
  • Patent number: 10724534
    Abstract: A blood pump includes a housing and a rotor within the housing configured to rotate along an axis. The rotor may include a hub, the hub having regions with blades and regions without blades. The regions without blades may have a constant outer diameter and may extend along at least one fourth the length of the hub. The regions with blades may have an increasing outer diameter. Blades may be disposed on a downstream end region of the hub and extend downstream of the hub. Blades may begin approximately halfway along the axial length of a motor stator located about a hub and extend downstream of the motor stator. Blades may have portions that produce axial fluid flow and radial fluid flow with improved flow characteristics.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: July 28, 2020
    Assignee: TC1 LLC
    Inventors: Yi-Ren Woo, Onur Dur, Steven H. Reichenbach
  • Patent number: 10722632
    Abstract: Methods, systems, and devices for a mechanical circulatory support system are disclosed herein. An implantable power supply can be part of a mechanical circulatory support system. The implantable power supply can include one or several energy storage components, a power source, a voltage converter, and an output bus. Power can be provided to the voltage converter from one or both of the power source and the first energy storage component. The voltage converter can convert the voltage of the power from a first voltage to a second voltage and can power the output bus.
    Type: Grant
    Filed: February 28, 2018
    Date of Patent: July 28, 2020
    Assignee: TC1 LLC
    Inventors: Ethan Petersen, Joseph C. Stark
  • Patent number: 10722633
    Abstract: Systems and related methods for supplying power to a medical device employ self-charging serially-connectable portable batteries. A system includes a base module and external battery modules. The base module is operatively coupled with the medical device and includes a base module input connector. Each of the external battery modules includes one or more battery cells, an output connector, an input connector, and a controller. The output connector is configured to output electrical power from the external battery module. The input connector is configured to receive electrical power from another of the plurality of external battery modules. The controller is operatively coupled with the one or more battery cells, the output connector, and the input connector. The controller is configured to control distribution of electrical power received via the input connector to charge the one or more battery cells and/or to be output via the output connector.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: July 28, 2020
    Assignee: TC1 LLC
    Inventors: Brian Kimball, Joseph C. Stark, III, Peter Thatcher, John Freddy Hansen, Peter Andriola, Carine Hoarau, Jaime Arturo Romero, Jesse Gage
  • Patent number: 10722630
    Abstract: A pressure differential across a blood pump and/or a flow rate of blood pumped by the blood pump is estimated based at least in part on impeller thrust load. A blood pump for a circulation assist system includes a housing forming a blood flow channel, an impeller, one or more support members coupled to the housing, a sensor, and a controller operatively coupled with the sensor. At least one of the one or more support members react a thrust load applied to the impeller by blood impelled through the blood flow channel by the impeller. The sensor generates output indicative of the magnitude of the thrust load. The controller is configured to process the sensor output to estimate at least one of a pressure differential across the blood pump and a flow rate of blood pumped by the blood pump.
    Type: Grant
    Filed: July 18, 2016
    Date of Patent: July 28, 2020
    Assignee: TC1 LLC
    Inventor: Ethan Falk Petersen