Patents Assigned to Technische Universitát Dresden
  • Patent number: 11952631
    Abstract: The present invention pertains to a method for the identification of genetic variants that are associated with the severity of an infectious disease. The invention further pertains to a set of genetic factors associated with the severity of Human respiratory syncytial virus (HRSV) infection, for example in human infants. The genetic polymorphisms identified according to the present invention are for use in the diagnostic of infectious diseases and patient stratification in order to avoid or reduce the occurrence of fatal events during infection or to elect the most appropriate therapeutic approach to treat the disease.
    Type: Grant
    Filed: October 9, 2018
    Date of Patent: April 9, 2024
    Assignees: MEDIZINISCHE HOCHSCHULE HANNOVER, TWINCORE ZENTRUM FÜR EXPERIMENTELLE UND KLINISCHE INFEKTIONSFORSCHUNG GMBH, TECHNISCHE UNIVERSITÄT DRESDEN
    Inventors: Daniel Todt, Sibylle Haid, Martin Wetzke, Gesine Hansen, Chris Lauber, Lars Kaderali, Thomas Pietschmann
  • Patent number: 11953583
    Abstract: A radar assembly and a method for operating the radar assembly is disclosed, where a first frequency comb generator is arranged in the transmitting unit between the first oscillator and the transmitting antenna and a second frequency comb generator is arranged in the receiving unit between the second oscillator and the first mixer. On the transmitter side a first frequency comb generator is controlled with the first oscillator frequency in order to generate a primary signal containing a plurality of frequency components, on the receiver side a second frequency comb generator is controlled with a second oscillator frequency in order to generate an output signal containing a plurality of frequency components, the output signal generated in such a way is mixed with a third oscillator frequency, and the intermediate frequency is generated by mixing the received reflected signal with the mixed signal.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: April 9, 2024
    Assignee: Technische Universität Dresden
    Inventors: Martin Laabs, Dirk Plettemeier
  • Patent number: 11938683
    Abstract: A shaped article, a method for making it, and its use. The shaped article is formed from flat fiber material and has a bottom (2), a body (4), and an opening, which is surrounded by a circumferential flange (6). The shaped article (1) comprises a flange stabilizer (10) attached to the second flat side (18) of the flange (6) facing the bottom (2). The flange stabilizer (10) is disc-shaped and has an inner contour (12) corresponding to the desired cross-sectional shape of the shaped article (1) in the region of the opening and can be slipped over the body (4) in the region of the bottom (2) and up to the flange (6). The flat sides (16, 18) of the flange stabilizer (10) extend essentially parallel to the flange (6), defining and stabilizing the cross-sectional shape of the body (4) in the region of the opening and the flange.
    Type: Grant
    Filed: June 11, 2021
    Date of Patent: March 26, 2024
    Assignee: Technische Universität Dresden
    Inventor: Tobias Müller
  • Patent number: 11929391
    Abstract: Described herein is an electronic component that may include a substrate, wherein the substrate may include at least two electrodes, wherein the at least two electrodes are each spaced apart from each other on and/or within the substrate. When the electronic component is in a first operating state, an electrolytic material may be disposed at least in a spatial region between the at least two electrodes, wherein the electrolytic material comprises at least one polymerizable material. When the electronic device is in a second operating state, at least one electrical connection may be made between the at least two electrodes, wherein the at least one electrical connection comprises an electrically conductive polymer. The electrically conductive polymer may comprise one or more fiber structures, wherein the one or more fiber structures are in physical contact with the at least two electrodes.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: March 12, 2024
    Assignee: Technische Universitat Dresden
    Inventors: Hans Kleemann, Matteo Cucchi, Karl Leo, Veronika Scholz, Hsin Tseng, Alexander Lee
  • Publication number: 20240032450
    Abstract: The invention relates to a device comprising: at least one tool module (4) having a quick-coupling interface (19); at least one support having a quick-coupling interface (19) and designed to hold the at least one tool module; and at least one data processing unit designed for computer-assisted tool management. The support for holding the tool module (4) comprises at least one support frame (16), at least one interface (21) for computer-assisted tool module identification, and at least one sensor unit. The support frame comprises at least one quick-coupling interface (19) for a tool module. The tool module comprises at least one implement (18) for use outdoors, at least one suspension that is compatible with the quick-coupling point on the support frame, at least one computer-readable storage medium (22) for computer-readable data, and at least one interface for transmission of computer-readable data.
    Type: Application
    Filed: November 1, 2021
    Publication date: February 1, 2024
    Applicant: TECHNISCHE UNIVERSITÄT DRESDEN
    Inventors: Thomas HERLITZIUS, André GROSA, Mario HENKE, Martin HENGST, Jonathan KRESS
  • Patent number: 11879778
    Abstract: The invention relates to a method for classifying spectra of objects having complex information content after recording of the spectra involving the use of a method for preprocessing data and of a method, associated with the data preprocessing, for classification with the calculation of a classifier. After the recording of the spectra and the preprocessing of the spectra, a multiple classification method is thereby performed with at least two different methods for the data preprocessing of the spectra and the method, assigned to the respective data preprocessing, for classification.
    Type: Grant
    Filed: September 15, 2017
    Date of Patent: January 23, 2024
    Assignee: TECHNISCHE UNIVERSITÄT DRESDEN
    Inventors: Gerald Steiner, Grit Preusse, Edmund Koch, Roberta Galli, Christian Schnabel, Johanna Preusse
  • Publication number: 20230419502
    Abstract: The invention relates to a computer-implemented method for the optical sensing, the detection and the quantification of relevant conditions and/or their changes with respect to at least one target object, wherein at least one target object is temporarily positioned opposite an optical sensor device, and wherein the fault conditions of the fault classes deviate from the optimal condition. The method is characterized particularly in that the background and the target object are distinguished by means of a higher rate of change of the image information of the background in comparison with the rate of change of the image information of the target object.
    Type: Application
    Filed: November 1, 2021
    Publication date: December 28, 2023
    Applicant: TECHNISCHE UNIVERSITÄT DRESDEN
    Inventors: Thomas HERLITZIUS, Samuel PANTKE, Patrick ZIRKER, Martin HENGST, Sören GEISSLER
  • Patent number: 11845954
    Abstract: The invention provides methods for specifically altering the DNA sequence in a genome, in particular for genome editing by deleting or replacing a sequence of interest. Advantageously, the invention uses two non-identical sequences naturally occurring in a genome as target sites two which DNA-recombining enzymes are generated. The invention is in particular useful for medicine, in particular to repair a mutation in a genome or to delete predefined genetic material from cells or tissue and to cure diseases. An advantage of the invention is that it allows precise site directed altering of DNA without engaging host DNA repair pathways and thereby works without inducing random insertions and deletions (indels).
    Type: Grant
    Filed: June 14, 2018
    Date of Patent: December 19, 2023
    Assignee: TECHNISCHE UNIVERSITÄT DRESDEN
    Inventors: Frank Buchholz, Martin Schneider, Felix Lansing
  • Publication number: 20230338553
    Abstract: The present invention provides the modular design and assembly of novel targeting bio-conjugates, exclusively assembled by means of biotin-biotin binding element conjugation, comprising mono-biotinylated cell binding component, a tetrameric biotin-binding element, and mono-biotinylated payload for therapeutic and diagnostic purposes. In addition, there is provided a method of delivering the payload, such as therapeutic oligonucleotides, via mono-biotinylated targeting devices, such as antibodies or ligands, into eukaryotic cells by means of receptor-mediated endocytosis. The targeting bio-conjugates are suitable for use in the areas of medicine, pharmacy and biomedical research.
    Type: Application
    Filed: October 6, 2022
    Publication date: October 26, 2023
    Applicant: TECHNISCHE UNIVERSITÄT DRESDEN
    Inventor: Achim TEMME
  • Patent number: 11783038
    Abstract: A device and a method for computer-aided processing of data are disclosed, the method including: providing configuration data of an application, determining a first application identification, wherein the first application identification is assigned to the application, determining a configuration identification, wherein the configuration identification is assigned to the configuration data of the application, individualizing the data by means of a second application identification, wherein the second application identification is determined using the first application identification and the configuration identification.
    Type: Grant
    Filed: June 24, 2021
    Date of Patent: October 10, 2023
    Assignee: Technische Universitat Dresden
    Inventors: Christof Fetzer, Franz Gregor
  • Patent number: 11705299
    Abstract: The invention relates to a liquid metal-ion beam system (1) or liquid metal electron beam system, including: a conductive emitter electrode (2), a conductive extractor electrode (3) opposite to the emitter electrode (2), a liquid metal reservoir (4) which is fluidically connected to the emitter electrode (2) for transporting liquid metal to the emitter electrode (2), a control unit (5) which is configured to apply a periodically varying operating voltage between emitter electrode (2) and extractor electrode (3).
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: July 18, 2023
    Assignee: TECHNISCHE UNIVERSITÄT DRESDEN
    Inventor: Martin Tajmar
  • Patent number: 11699749
    Abstract: An electronic circuit having a semiconductor device is provided that includes a heterostructure, the heterostructure including a first layer of a compound semiconductor to which a second layer of a compound semiconductor adjoins in order to form a channel for a 2-dimensional electron gas (2DEG), wherein the 2-dimensional electron gas is not present. In aspects, an electronic circuit having a semiconductor device is provided that includes a III-V heterostructure, the III-V heterostructure including a first layer including GaN to which a second layer adjoins in order to form a channel for a 2-dimensional electron gas (2DEG), and having a purity such that the 2-dimensional electron gas is not present. It is therefore advantageous for the present electronic circuit to be enclosed such that, in operation, no light of wavelengths of less than 400 nm may reach the III-V heterostructure and free charge carriers may be generated by these wavelengths.
    Type: Grant
    Filed: July 11, 2019
    Date of Patent: July 11, 2023
    Assignees: NAMLAB GGMBH, TECHNISCHE UNIVERSITÄT DRESDEN
    Inventors: Stefan Schmult, Andre Wachowiak, Alexander Ruf
  • Publication number: 20230202930
    Abstract: Embodiments are directed to the field of ceramics and relate to electron-emitting ceramics such as those which can be used as cathode material for electron emissions in space flight systems, for example. Embodiments specify an electron-emitting ceramic which has an improved temperature conductivity with a simultaneously continuous electron emission. The electron-emitting ceramic contains at least>70 vol. % C12A7 electride and a proportion of Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ru, Os, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, In, Sn, Sb, Te, Tl, Pb, or Bi as metal and/or with Ti, wherein the proportion of the metals lies between>0 and<30 vol. %, and the ceramic has a density of at least 85% of the theoretical density of the ceramic and the ceramic contains 0 to maximally 10 vol. % production-specific impurities.
    Type: Application
    Filed: March 17, 2021
    Publication date: June 29, 2023
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E.V., TECHNISCHE UNIVERSITÄT DRESDEN
    Inventors: Katja WÄTZIG, Christian DROBNY, Martin TAJMAR
  • Patent number: 11660824
    Abstract: The invention relates to an apparatus and to a method for establishing a connection having material continuity or having material continuity and shaping matching or for separating such a connection of at least one metal or ceramic component and of a component formed from or by a thermoplastic polymer in which the components to be joined together can be pressed together by a pressing device having a counterholder and a plunger. A heating device is present at the plunger and/or at the counterholder or acts there.
    Type: Grant
    Filed: March 14, 2017
    Date of Patent: May 30, 2023
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWANDTEN FORSCHUNG E.V., TECHNISCHE UNIVERSITAT DRESDEN
    Inventors: Maurice Langer, Annett Klotzbach, Robert Pautzsch
  • Patent number: 11610416
    Abstract: A classifying device for classifying cells in real-time, comprising: as alignment unit configured to align a cell to be classified along the cell's major axis; and a classifying unit configured to classify the aligned cell using a multilayer perceptron, MLP; wherein the MLP classifies the aligned cell based on one or more images of the aligned cell. By executing the classifying device, an improved and efficient cell classification in real-time based on cell images can be provided, while labelling of the cells to be classified can be avoided.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: March 21, 2023
    Assignees: TECHNISCHE UNIVERSITÄT DRESDEN, MAX-PLANCK-GESELLSCHAFT ZUR FÖRDERUNG DER WISSENSC
    Inventors: Maik Herbig, Ahmad Ahsan Nawaz, Martin Nötzel, Jochen Guck
  • Patent number: 11578307
    Abstract: The present invention relates to the field of immunology, molecular biology and therapeutics. In particular, the invention relates to novel artificial feeder cells for activation and expansion of natural killer (NK) cells. The artificial feeder cell expresses endogenous ligands (HLA C1, C2, 5 and Bw4 type) for killer cell immunoglobulin-like receptors (KIRs), non-KIR binding Bw6 ligand, endogenous HLA-E-ligand for inhibitory NKG2A receptor, and comprises at least one stimulatory cytokine either membrane bound or secreted or at least one co-stimulatory ligand where those ligands and cytokines each specifically bind to a cognate receptor on a NK cell of interest, thereby mediating expansion of the NK cell. The invention can be used as an “off the 10 shelf” artificial feeder cell that can be readily designed to expand a NK cell or a NK subset of interest and also specifically expand NK cells modified with a chimeric antigen receptor (CAR).
    Type: Grant
    Filed: November 22, 2019
    Date of Patent: February 14, 2023
    Assignee: TECHNISCHE UNIVERSITAT DRESDEN
    Inventor: Achim Temme
  • Patent number: 11545654
    Abstract: The present invention relates to a method for producing a substrate (2) which is coated with an alkali metal (1), in which method a promoter layer (3) which is composed of a material which reacts with the alkali metal (1) by at least partial chemical reduction of the promoter layer (3) is applied to a surface of the substrate (2) and a surface of the promoter layer (3) is acted on by an alkali metal (1) and then the alkali metal (1) is converted into the solid phase and a coating containing the alkali metal is formed.
    Type: Grant
    Filed: May 15, 2018
    Date of Patent: January 3, 2023
    Assignees: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V, TECHNISCHE UNIVERSITÄT DRESDEN
    Inventors: Stefan Kaskel, Holger Althues, Benjamin Schumm, Nicolai Dresel, Kay Schoenherr
  • Patent number: 11536704
    Abstract: To determine the sex of a bird egg, a hole is produced at the blunt end of the bird egg, wherein the hole affects the calcareous shell and the outer shell membrane, whereas the inner shell membrane remains intact. In the region of the hole at the blunt end, beneath the intact inner shell membrane, at least one blood vessel is registered and the blood therein is excited by means of a preset incident radiation, the back-scattered radiation of which blood is measured, detected and evaluated for the sex determination.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: December 27, 2022
    Assignee: TECHNISCHE UNIVERSITÄT DRESDEN
    Inventors: Gerald Steiner, Grit Preusse, Edmund Koch, Roberta Galli, Christian Schnabel
  • Patent number: 11504432
    Abstract: The present invention provides the modular design and assembly of novel targeting bio-conjugates, exclusively assembled by means of biotin-biotin binding element conjugation, comprising mono-biotinylated cell binding component, a tetrameric biotin-binding element, and mono-biotinylated payload for therapeutic and diagnostic purposes. In addition, there is provided a method of delivering the payload, such as therapeutic oligonucleotides, via mono-biotinylated targeting devices, such as antibodies or ligands, into eukaryotic cells by means of receptor-mediated endocytosis. The targeting bio-conjugates are suitable for use in the areas of medicine, pharmacy and biomedical research.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: November 22, 2022
    Assignee: TECHNISCHE UNIVERSITÄT DRESDEN
    Inventor: Achim Temme
  • Publication number: 20220359872
    Abstract: The invention relates to alkaline secondary batteries. The secondary battery contains a cathode, an anode and an electrolyte, said secondary battery being arranged between the cathode and anode and comprises an alkali metal ion conductive contact to the cathode and to the carbon layer of the anode. The anode contains or consists of a carbon layer, whereby the carbon layer, alone or in combination with an electrically conductive substrate, forms with an electrically conductive contact.
    Type: Application
    Filed: June 16, 2020
    Publication date: November 10, 2022
    Applicants: FRAUNHOFER-GESELLSCHAFT ZUR FÖRDERUNG DER ANGEWANDTEN FORSCHUNG E. V., TECHNISCHE UNIVERSITÄT DRESDEN
    Inventors: Felix HIPPAUF, Susanne DÖRFLER, Holger ALTHUES, Stefan KASKEL, Jonas PAMPEL, Luise BLOI