Patents Assigned to Technische Universiteit Delft
  • Publication number: 20240141410
    Abstract: The present invention relates to the field of biotechnology, more specifically to the field of molecular diagnostics, more specifically to a method for the detection of a polynucleotide of interest in a sample.
    Type: Application
    Filed: October 13, 2020
    Publication date: May 2, 2024
    Applicant: Technische Universiteit Delft
    Inventors: Mitasha Bharadwaj, Michel Leigh Bengtson, Cornelis Dekker, Jaco van der Torre, Oskar Franch
  • Publication number: 20240146503
    Abstract: Digitally controlled segmented RF power transmitter with a digital processing part (2) and an RF power amplification part (3) having a plurality of segments (122). The digital processing part (2) has a clock generation block (5) being arranged to generate n equi-phased clock signals with a 50% duty-cycle (fLO,x_50%; Cx), and a sign-bit phase mapper unit (11) being arranged to receive the n equi-phased clock signals (fLO,x_50%; Cx), and sign signals (SignI, SignQ; sign bits), and to output a set of m, m?n, phase mapped clock signals with a 50% duty-cycle (CLKy,50%; Cy) using a predetermined phase swapping scheme. Each of the plurality of segments (122) comprises logic circuitry (12) receiving the set of m phase-mapped clock signals with a 50% duty-cycle (CLKy,50%; Cy), and being arranged to provide the respective segment driving signal with a duty-cycle z of less than 50%.
    Type: Application
    Filed: February 4, 2022
    Publication date: May 2, 2024
    Applicant: Technische Universiteit Delft
    Inventors: Mohammad Reza Beikmirza, Leonardus Cornelis Nicolaas de Vreede, Robert Jan Bootsman, Dieuwert Peter Nicolaas Mul, Seyed Morteza Alavi, Yiyu Shen
  • Publication number: 20240146346
    Abstract: A method of applying an activation scheme to a digitally controlled segmented RF power transmitter having a plurality of adjacent segments (3), each segment (3) having an associated activation area, the segments (3) being controlled by one or more code words (CWD) The method includes controlling segments (3) by activating a specific segment (3) using an activation scheme for activating specific ones of the segments (3) depending on the code word (CWD), the activation scheme starting from center ones of the plurality of segments (3) towards outer ones of the plurality of segments (3) for increasing code word (CWD) values. This method can be applied in any digitally controlled segmented RF power transmitter, be it in polar or Cartesian implementations, and in single ended or push-pull output configurations.
    Type: Application
    Filed: February 4, 2022
    Publication date: May 2, 2024
    Applicant: TECHNISCHE UNIVERSITEIT DELFT
    Inventors: Dieuwert Peter Nicolaas Mul, Robert Jan Bootsman, Mohammad Reza Beikmirza, Seyed Morteza Alavi, Leonardus Cornelis Nicolaas de Vreede
  • Patent number: 11973476
    Abstract: Chopper amplifiers with low intermodulation distortion (IMD) are provided. To compensate for IMD, at least one distortion compensation channel is included in parallel with chopper amplifier circuitry of a main signal channel. Additionally, output selection switches are included for selecting between the output of the main signal path and the distortional compensation channel(s) over time to maintain the output current continuous. Such IMD compensation can be realized by filling in missing current of the main signal channel using the distortion compensation channel(s), or by using channel outputs only when they have settled current.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: April 30, 2024
    Assignee: Technische Universiteit Delft
    Inventors: Casper Thije Rooijers, Johan H. Huijsing, Kofi A. A. Makinwa
  • Patent number: 11889459
    Abstract: The invention relates to methods and systems for phase-based determination of a distance and/or a frequency offset between a first node and a second node in a wireless network.
    Type: Grant
    Filed: March 9, 2020
    Date of Patent: January 30, 2024
    Assignees: KONINKLIJKE KPN N.V., TECHNISCHE UNIVERSITEIT DELFT
    Inventors: Tarik Kazaz, Mario Alberto Coutino Minguez, Gerardus Johannes Maria Janssen, Geert Jozef Therese Leus, Alle Jan Van der Veen
  • Publication number: 20240019513
    Abstract: Method for magnetic resonance imaging, MRI, comprising obtaining an image acquisition sequence comprising RF pulses and magnetic field gradients configured to encode spatial information in a part of an object; obtaining an acoustic noise cancelling signal corresponding to the obtained image acquisition sequence at a first position; generating the image acquisition sequence; wherein the magnetic fields gradients are generated by gradient coils configured for three orthogonal directions respectively; and converting, by an acoustic transducer, simultaneously with the image acquisition sequence, the predetermined noise cancelling signal to an acoustic noise cancelling signal at the first position.
    Type: Application
    Filed: October 28, 2021
    Publication date: January 18, 2024
    Applicant: TECHNISCHE UNIVERSITEIT DELFT
    Inventors: Sebastian Daniel Weingärtner, Paulina {hacek over (S)}iuryté, João Luis Silva Canaveira Tourais
  • Publication number: 20240011897
    Abstract: The present invention relates to a tuneable hydrogen sensing device, to a method for producing said thin-film device, to a use of said thin-film device for detecting a chemical species, to a sensor, such as a hydrogen sensor, to a device comprising said sensor, and to an apparatus for detecting hydrogen.
    Type: Application
    Filed: October 28, 2021
    Publication date: January 11, 2024
    Applicant: TECHNISCHE UNIVERSITEIT DELFT
    Inventors: Lars Johannes BANNENBERG, Herman SCHREUDERS
  • Patent number: 11869612
    Abstract: Method for testing an integrated circuit device, by defect modelling of the integrated circuit device, fault modelling of the integrated circuit device based on the information obtained from the defect modelling, test development based on information obtained from the fault modelling, and executing the test on the integrated circuit device. Defect modelling of the integrated circuit device including executing a physical defect analysis of the integrated circuit device to provide a set of effective technology parameters modified from a set of defect-free technology parameters associated with the integrated circuit device, and executing an electrical modelling of the integrated circuit device using the set of effective technology parameters to provide a defect-parametrized electrical model based on a defect-free electrical model of the integrated circuit device. The present methods allow parts-per-billion testing capabilities.
    Type: Grant
    Filed: September 3, 2020
    Date of Patent: January 9, 2024
    Assignee: Technische Universiteit Delft
    Inventors: Mottaqiallah Taouil, Said Hamdioui
  • Patent number: 11861182
    Abstract: Integrated circuit device having a processor module (2) in communication with a cache memory module (3, 4), and one or more memory control modules (6, 8, 10) each arranged to interface with an associated storage memory unit (5, 7, 9). An authentication module (15) is provided in communication with the memory control modules (6, 8, 10) and the cache memory modules (3, 4). The authentication module (15) is arranged to generate and store a hardware based secure key, read a predetermined set of data from the associated storage memory units (5, 7, 9), and an associated stored hash value, calculate a hash value of the predetermined set of data using the hardware based secure key; and store the predetermined set of data in the cache memory module (3, 4) only if the calculated hash value corresponds to the associated stored hash value.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: January 2, 2024
    Assignee: Technische Universiteit Delft
    Inventors: Mottaqiallah Taouil, Cezar Rodolfo Wedig Reinbrecht, Fethulah Smailbegovic, Said Hamdioui
  • Publication number: 20230408566
    Abstract: An assembly for characterizing a device under test (DUT) (2), comprising a dome (5) forming a test chamber. The assembly further comprises a plurality of sampling units (4), wherein during characterization of the DUT (2) the plurality of sampling units (4) are static with respect to the DUT (2) and the dome (5), and spatially distributed over the dome (5) in a far-field range of the DUT (2). The plurality of sampling units (4) are configured to receive a signal inside the test chamber, and transmit an output signal based on the received signal for further analysis. In a further aspect, a method for characterizing a DUT (2) is also provided.
    Type: Application
    Filed: November 18, 2021
    Publication date: December 21, 2023
    Applicant: TECHNISCHE UNIVERSITEIT DELFT
    Inventors: Marco SPIRITO, Ferdinand Alexander MUSTERS, Earl William MC CUNE JR.
  • Patent number: 11835385
    Abstract: The present invention is in the field of a geometrically and spectrally resolved albedometer for a PV-module, a method of determining characteristics of reflected light, a method of optimizing reflected light performance of a solar cell, and a computer program for geometrically and spectrally resolving light.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: December 5, 2023
    Assignee: TECHNISCHE UNIVERSITEIT DELFT
    Inventors: Gregory Pandraud, Miroslav Zeman, Olindo Isabella, Stefaan Gustaaf Mariette Heirman, Hesan Ziar
  • Publication number: 20230363327
    Abstract: The invention provides a method for determining a physical vessel parameter of a vascular tissue in a vascular plant (10), wherein the method comprises: a detection stage comprising detecting acoustic emission radiation (121) from the vascular plant (10) and providing an emission-related signal; and an analysis stage comprising determining the physical vessel parameter based on the emission-related signal, wherein the physical vessel parameter comprises an elasticity or a vessel dimension, and wherein the analysis stage comprises fitting at least part of the emission-related signal to a model of flexural modes of a cylindrical beam, and determining the physical vessel parameter based on the model.
    Type: Application
    Filed: September 10, 2021
    Publication date: November 16, 2023
    Applicants: Technische Universiteit Delft, Wageningen Universiteit
    Inventors: Gerard Jan VERBIEST, Peter Gerard STEENEKEN, Satadal DUTTA, Martin Elias KAISER, Priscila Rocío MALCOLM MATAMOROS
  • Publication number: 20230327452
    Abstract: The present invention is in the field of a switching matrix for reconfigurable PV modules and systems, in order to compensate for sub-optimal functioning cells, such as due to shading, by automatically interconnecting cells and/or blocks to optimize output power of a PV-module or modules or systems.
    Type: Application
    Filed: March 25, 2021
    Publication date: October 12, 2023
    Applicant: TECHNISCHE UNIVERSITEIT DELFT
    Inventors: Miroslav ZEMAN, Olindo ISABELLA, Andres CALCABRINI, Vincenzo STORNELLI, Mirco MUTTILLO
  • Patent number: 11721748
    Abstract: Quantum dot devices, and related systems and methods, are disclosed herein. In some embodiments, a quantum dot device may include a quantum well stack having a first face and a second opposing face; an array of parallel first gate lines at the first face or the second face of the quantum well stack; and an array of parallel second gate lines at the first face or the second face of the quantum well stack, wherein the second gate lines are oriented diagonal to the first gate lines.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: August 8, 2023
    Assignees: Intel Corporation, Technische Universiteit Delft
    Inventors: Kanwaljit Singh, James S. Clarke, Menno Veldhorst, Lieven Mark Koenraad Vandersypen
  • Patent number: 11721723
    Abstract: Quantum dot devices, and related systems and methods, are disclosed herein. In some embodiments, a quantum dot device may include a quantum well stack; a plurality of first gate lines above the quantum well stack; a plurality of second gate lines above the quantum well stack, wherein the second gate lines are perpendicular to the first gate lines; and an array of regularly spaced magnet lines.
    Type: Grant
    Filed: May 14, 2021
    Date of Patent: August 8, 2023
    Assignees: Intel Corporation, Technische Universiteit Delft
    Inventors: Kanwaljit Singh, James S. Clarke, Menno Veldhorst, Lieven Mark Koenraad Vandersypen
  • Patent number: 11721725
    Abstract: Quantum dot devices, and related systems and methods, are disclosed herein. In some embodiments, a quantum dot device may include a quantum well stack; a plurality of first gate lines above the quantum well stack; a plurality of second gate lines above the quantum well stack, wherein the second gate lines are perpendicular to the first gate lines; and an array of regularly spaced magnet lines.
    Type: Grant
    Filed: February 24, 2022
    Date of Patent: August 8, 2023
    Assignees: Intel Corporation, Technische Universiteit Delft
    Inventors: Kanwaljit Singh, James S. Clarke, Menno Veldhorst, Lieven Mark Koenraad Vandersypen
  • Publication number: 20230226775
    Abstract: The invention provides a sonotrode (100) for welding a material, the sonotrode (100) comprising a welding section (110) configured for contacting the material, wherein the welding section (110) defines a rounded shape (111) in a cross-section parallel to a longitudinal axis (A) of the sonotrode (100), wherein the rounded shape (111) approximates a circular sector (20), wherein the circular sector (20) has a central angle ?c selected from the range of 25°-300°, and wherein the circular sector (20) has a central radius rc selected from the range of 5-30 mm, and wherein the sonotrode (100) has a width W perpendicular to the longitudinal axis (A) [and to the cross-section], wherein W is selected from the range of 10-100 mm.
    Type: Application
    Filed: June 23, 2021
    Publication date: July 20, 2023
    Applicant: Technische Universiteit Delft
    Inventors: Bram Cornelius Petrus JONGBLOED, Irene Fernandez VILLEGAS, Julie Jan Edouard TEUWEN
  • Publication number: 20230143414
    Abstract: An RF transmitter having one or more common-gate, CG, or common-base, CB, configured output stages, and a digitally controlled current source having a plurality of unit cells connected to the output stages, each of the plurality of unit cells comprising a current source. The digitally controlled current source is configured for driving the output stages with respective driving currents originating from the associated current source in each of the plurality of unit cells, in dependence of one or more input signals. The digitally controlled current source further comprises a current diversion path in each of the plurality of unit cells for providing a diversion current to a voltage source having a voltage lower than drain/collector terminals of transistors provided in the CG/CB configured output stages.
    Type: Application
    Filed: March 19, 2021
    Publication date: May 11, 2023
    Applicant: Technische Universiteit Delft
    Inventors: Leonardus Cornelis Nicolaas De Vreede, Yiyu Shen, Seyed Morteza Alavi
  • Publication number: 20230138353
    Abstract: A superconducting device is described wherein the device comprises a substrate; a capacitor structure (604) and a superconducting inductor structure (602) disposed on the substrate, the capacitor structure an the superconducting inductor structure forming a superconducting microwave filter structure, in particular a low-pass filter, the superconducting inductor structure including a plurality of nanowires of a superconducting material, each of the plurality of nanowires being galvanically connected to one of a plurality of capacitor electrodes (608) forming the capacitor structure, wherein the cross-sectional dimensions of the plurality of nanowires are selected such that the kinetic inductance of each of the one or more nanowires is larger, preferably substantially larger, than the geometrical inductance of the nanowire.
    Type: Application
    Filed: April 7, 2021
    Publication date: May 4, 2023
    Applicant: TECHNISCHE UNIVERSITEIT DELFT
    Inventors: Guoji ZHENG, Patrick HARVEY-COLLARD
  • Publication number: 20230139209
    Abstract: An RF transmitter (1) having a gate-segmented power output stage (2) and a digital driver (5). The gate-segmented power output stage (2) includes a field-effect transistor with a plurality of gate fingers (32) and drain fingers (31) that define a gate periphery. The field-effect transistor comprises a plurality of power output stage segments (3) that each correspond to a respective part of the gate periphery, and that each have a respective power output stage segment input (4). The digital driver (5) has control outputs (6) which are connected to corresponding ones of the respective power output stage segment inputs (4), and is configured for individually switching each of the power output stage segments (3) between an on mode and a cut-off mode in dependence of one or more input signals to obtain a modulated RF carrier signal at an output (7) of the gate-segmented power output stage (2).
    Type: Application
    Filed: February 5, 2021
    Publication date: May 4, 2023
    Applicant: Technische Universiteit Delft
    Inventors: Leonardus Cornelis Nicolaas de Vreede, Seyed Morteza Alavi, Robert Jan Bootsman, Mohammad Reza Beikmirza, Dieuwert Peter Nicolaas Mul, Rob Heeres, Freerk van Rijs