Abstract: A backlight assembly, a display panel and a display device are provided. the backlight assembly includes: a work region, a light-emitting element, a light guide plate and a light guide structure. The work region includes a center region and an edge region surrounding the center region; the light-emitting element is at least in the center region; the light guide plate is in the work region, and configured to conduct light emitted by the light-emitting element and allow the light to exit from the work region; and the light guide structure is at a side of the light guide plate close to the light-emitting element, and arranged along at least part of an edge of the light guide plate; the light guide structure is configured to allow a part of the light emitted by the light-emitting element to enter the edge region.
Abstract: A communication method and a communications apparatus are provided, to resolve a problem of how to send and receive a remote interference management reference signal (RIM-RS) during remote interference measurement. The method includes determining a transmission resource of a reference signal based on identification information and parameter information, where the transmission resource includes one or more of a sequence, a frequency domain resource, and a time domain resource of the reference signal, the identification information is used to identify a network device, the parameter information includes sequence indication information and frequency domain indication information, the sequence indication information is used to indicate one or more candidate sequences, and the frequency domain indication information is used to indicate one or more candidate frequency domain resources. The method may further include sending the reference signal on the transmission resource.
Abstract: An optical module includes a circuit board, a light emitting device and a data processor. The data processor is disposed on the circuit board. The data processor includes a reverse gearbox and a gearbox. The reverse gearbox is connected to the light emitting device, and is configured to receive a high-speed electrical signal from the circuit board, and decode the high-speed electrical signal into a plurality of channels of low-speed electrical signals. The plurality of channels of low-speed electrical signals drive the light emitting device to emit the plurality of channels of optical signals. The gearbox is connected to the light receiving device, and is configured to receive a plurality of channels of low-speed electrical signals output by the light receiving device, encode the plurality of channels of low-speed electrical signals into a high-speed electrical signal, and transmit the high-speed electrical signal to the circuit board.
Abstract: Disclosed are a method, device and system for dynamically controlling a gain of a Raman optical fiber amplifier. The method comprises: determining whether a target gain falls within a gain mask range; if the target gain falls within the gain mask range, directly locking a gain to the target gain; and if the target gain falls outside the gain mask range, locking the gain to a corresponding maximum gain in the gain mask range, and gradually increasing the locked gain according to a preset first step length until the target gain is reached or until at least one pump laser reaches a maximum output power. The invention enables an optical fiber amplifier to respond quickly to a change in an input optical signal, ensures gain stability, and ensures that no power overshoot or undershoot occurs in the non-switched optical channels in an optical path. Moreover, the invention minimizes an amount of time required to complete switching between gains.
Abstract: A driving system and a driving method for driving a display wall are disclosed. The driving system includes signal transforming units, interface transforming units, sub-display screen driving circuits and sub-displays. The driving system is simple. It means that a small number of circuit boards are required to achieving the driving of the display wall and thus the cost is reduced.
Type:
Grant
Filed:
December 10, 2021
Date of Patent:
August 27, 2024
Assignee:
TCL China Star Optoelectronics Technology Co., Ltd.
Abstract: This application provides a reference signal generation method, a reference signal detection method, and a communications apparatus, so that a terminal device or a network device can generate a reference signal by using a pseudo-random sequence initial factor cinit provided in embodiments of this application. Compared with a solution in the current technology, the generation manner can support a relatively large quantity of reference signal sequences, to better meet requirements of a plurality of 5G scenarios. The method may include: obtaining a reference signal sequence based on a pseudo-random sequence initial factor cinit; and mapping the sequence to one or more OFDM symbols, where the pseudo-random sequence initial factor cinit is related to a parameter d, d max(log2(nID,max+1)?10,0) or d=max(log2 (nID,max+1)?12,0), max represents that a larger value is selected from two values, and nID,max represents a maximum value of a reference signal sequence ID.
Abstract: The present invention provides an operating method of a display device. An example operating method includes driving each pixel for each frame, wherein a plurality of pixels of the display device are disposed in an array of rows and columns, a period of one frame comprises one or more data sections and one or more off-sections, ratios of time length of the one or more data sections are substantially the same as a sequence of powers of 2, each of the one or more data sections corresponds to an ON period or an OFF period related to a specified brightness, grey scale color, or luminance, and each of the one or more off-sections corresponds to the OFF period unrelated to the specified brightness, grey scale color, or luminance.
Abstract: A sensor control method includes: obtaining first indication information, where the first indication information indicates a first scenario; determining a configuration parameter of at least one sensor based on the first indication information, where the configuration parameter is corresponding to the first scenario; and sending the configuration parameter to the at least one sensor. The sensor control method may be applied to automatic driving or intelligent driving, and may be specifically applied to assisted driving or unmanned driving. The sensor can be flexibly controlled through configurable parameters of sensors such as radar or a camera.
Abstract: A transparent OLED display panel, a manufacturing method therefor, and a display apparatus are provided, relating to the field of display technologies. The display panel has a plurality of transparent regions and a plurality of display regions, wherein the transparent regions and the display regions are alternately arranged in a first direction. The display panel includes a plurality of pixels arranged in a second direction and a plurality of data lines; each of the pixels includes a plurality of sub-pixels, and the sub-pixels in each display region include a row of first sub-pixels and a row of second sub-pixels both arranged in the second direction; and the pixel at least includes one first sub-pixel and one second sub-pixel adjacent to each other. In the same display region, one first sub-pixel and one second sub-pixel adjacent to each other in the first direction are connected to the same data line.
Abstract: The present application relates to a pixel structure, a mask plate and a display panel. The pixel structure includes a plurality of repeating units arranged repetitively. Each of the repeating units includes a first sub-pixel, a second sub-pixel, and a third sub-pixel in different colors. Virtual edges of two adjacent sub-pixels in same color of adjacent repeating units are spaced apart from each other and form a transmitting region.
Type:
Grant
Filed:
August 10, 2021
Date of Patent:
August 27, 2024
Assignee:
YUNGU (GU'AN) TECHNOLOGY CO., LTD.
Inventors:
Yuxuan Liu, Dong Zhao, Xiaopeng Lv, Mingxing Liu
Abstract: A method of decoding is provided. The method includes receiving a video bitstream including a plurality of layers, a video parameter set (VPS) specifying a plurality of output layer sets (OLSs) each including one or more layers from the plurality of layers, and a sequence parameter set (SPS) including a set of decoded picture buffer (DPB) parameters for each of the one or more layers only once when one or more of the one or more layers have been included in more than one of the plurality of OLSs; and decoding a picture from one of the plurality of layers to obtain a decoded picture. A corresponding method of encoding is also provided.
Abstract: A method of coding is described. The method can include obtaining a bitstream for a current picture, obtaining a value of a first indicator for the current picture according to the bitstream indicating a slice type, and obtaining a value of a second indicator for the current picture according to the bitstream indicating whether a weighted prediction parameter is present in a picture header or slice header of the bitstream. The method can also include parsing a value of the weighted prediction parameter for a current block of a current slice of the current picture from the bitstream. Furthermore, the method can include predicting the current block according to the value of the weighted prediction parameter.