Patents Assigned to Tela Innovations, Inc.
  • Patent number: 10734383
    Abstract: An integrated circuit includes a gate electrode level region that includes a plurality of linear-shaped conductive structures. Each of the plurality of linear-shaped conductive structures is defined to extend lengthwise in a first direction. Some of the plurality of linear-shaped conductive structures form one or more gate electrodes of corresponding transistor devices. A local interconnect conductive structure is formed between two of the plurality of linear-shaped conductive structures so as to extend in the first direction along the two of the plurality of linear-shaped conductive structures.
    Type: Grant
    Filed: January 2, 2018
    Date of Patent: August 4, 2020
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 10727252
    Abstract: A first conductive structure forms gate electrodes of a first transistor of a first transistor type and a first transistor of a second transistor type. A second conductive structure forms a gate electrode of a second transistor of the first transistor type. A third conductive structure forms a gate electrode of a second transistor of the second transistor type. A fourth conductive structure forms a gate electrode of a third transistor of the first transistor type. A fifth conductive structure forms a gate electrode of a third transistor of the second transistor type. A sixth conductive structure forms gate electrodes of a fourth transistor of the first transistor type and a fourth transistor of the second transistor type. The second and third transistors of the first transistor type and the second and third transistors of the second transistor type are electrically connected to form a cross-coupled transistor configuration.
    Type: Grant
    Filed: January 16, 2018
    Date of Patent: July 28, 2020
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 10658385
    Abstract: A first PMOS transistor is defined by a gate electrode extending along a first gate electrode track. A second PMOS transistor is defined by a gate electrode extending along a second gate electrode track. A first NMOS transistor is defined by a gate electrode extending along a third gate electrode track. A second NMOS transistor is defined by a gate electrode extending along a fourth gate electrode track. The gate electrodes of the first PMOS transistor and the first NMOS transistor are electrically connected to a first gate node. The gate electrodes of the second PMOS transistor and the second NMOS transistor are electrically connected to a second gate node. Each of the first PMOS transistor, the first NMOS transistor, the second PMOS transistor, and the second NMOS transistor has a respective diffusion terminal electrically connected to a common output node.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 19, 2020
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 10651200
    Abstract: A first PMOS transistor is defined by a gate electrode extending along a first gate electrode track. A second PMOS transistor is defined by a gate electrode extending along a second gate electrode track. A first NMOS transistor is defined by a gate electrode extending along the second gate electrode track. A second NMOS transistor is defined by a gate electrode extending along a third gate electrode track. The gate electrodes of the first PMOS transistor and the first NMOS transistor are electrically connected to a first gate node. The gate electrodes of the second PMOS transistor and the second NMOS transistor are electrically connected to a second gate node. Each of the first PMOS transistor, the first NMOS transistor, the second PMOS transistor, and the second NMOS transistor has a respective diffusion terminal electrically connected to a common output node.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 12, 2020
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 10446536
    Abstract: A cell circuit and corresponding layout is disclosed to include linear-shaped diffusion fins defined to extend over a substrate in a first direction so as to extend parallel to each other. Each of the linear-shaped diffusion fins is defined to project upward from the substrate along their extent in the first direction. A number of gate level structures are defined to extend in a conformal manner over some of the number of linear-shaped diffusion fins. Portions of each gate level structure that extend over any of the linear-shaped diffusion fins extend in a second direction that is substantially perpendicular to the first direction. Portions of each gate level structure that extend over any of the linear-shaped diffusion fins form gate electrodes of a corresponding transistor. The diffusion fins and gate level structures can be placed in accordance with a diffusion fin virtual grate and a gate level virtual grate, respectively.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: October 15, 2019
    Assignee: Tela Innovations, Inc.
    Inventor: Scott T. Becker
  • Patent number: 10230377
    Abstract: An exclusive-or circuit includes a pass gate controlled by a second input node. The pass gate is connected to pass through a version of a logic state present at a first input node to an output node when so controlled. A transmission gate is controlled by the first input node. The transmission gate is connected to pass through a version of the logic state present at the second input node to the output node when so controlled. Pullup logic is controlled by both the first and second input nodes. The pullup logic is connected to drive the output node low when both the first and second input nodes are high. An exclusive-nor circuit is defined similar to the exclusive-or circuit, except that the pullup logic is replaced by pulldown logic which is connected to drive the output node high when both the first and second input nodes are high.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: March 12, 2019
    Assignee: Tela Innovations, Inc.
    Inventor: Scott T. Becker
  • Patent number: 10217763
    Abstract: An integrated circuit includes a first gate electrode track and a second gate electrode track. The first gate electrode track includes a first gate electrode feature that forms an n-channel transistor as it crosses an n-diffusion region. The first gate electrode track does not cross a p-diffusion region. The second gate electrode track includes a second gate electrode feature that forms a p-channel transistor as it crosses a p-diffusion region. The second gate electrode track does not cross an n-diffusion region. The integrated circuit also includes a linear shaped conductor that crosses both the first and second gate electrode features in a reference direction perpendicular to the first and second gate electrode tracks. The linear shaped conductor provides electrical connection between the first and second gate electrode features.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: February 26, 2019
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 10186523
    Abstract: An integrated circuit includes a first gate electrode track and a second gate electrode track. The first gate electrode track includes a first gate electrode feature that forms an n-channel transistor as it crosses an n-diffusion region. The first gate electrode track does not cross a p-diffusion region. The second gate electrode track includes a second gate electrode feature that forms a p-channel transistor as it crosses a p-diffusion region. The second gate electrode track does not cross an n-diffusion region. The integrated circuit also includes a linear shaped conductor that crosses both the first and second gate electrode features in a reference direction perpendicular to the first and second gate electrode tracks. The linear shaped conductor provides electrical connection between the first and second gate electrode features.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 22, 2019
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 10141335
    Abstract: Gate structures formed from substantially rectangular shaped gate structure layout shapes positioned on a gate horizontal grid having at least seven gate gridlines within a region. A first-metal layer including first-metal structures formed from substantially rectangular shaped first-metal structure layout shapes is formed above top surfaces of the gate structures within the region. The first-metal structure layout shapes are positioned on a first-metal vertical grid having at least eight first-metal gridlines. At least six contact structures are formed from substantially rectangular shaped contact structure layout shapes in physical and electrical contact with corresponding ones of at least six of the gate structures. A total number of first-transistor-type-only gate structures equals a total number of second-transistor-type-only gate structures within the region.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: November 27, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 10141334
    Abstract: Gate structures are positioned within a region in accordance with a gate horizontal grid that includes at least seven gate gridlines separated from each other by a gate pitch of less than or equal to about 193 nanometers. Each gate structure has a substantially rectangular shape with a width of less than or equal to about 45 nanometers and is positioned to extend lengthwise along a corresponding gate gridline. Each gate gridline has at least one gate structure positioned thereon. A first-metal layer is formed above top surfaces of the gate structures within the region and includes first-metal structures positioned in accordance with a first-metal vertical grid that includes at least eight first-metal gridlines. Each first-metal structure has a substantially rectangular shape and is positioned to extend along a corresponding first-metal gridline. At least six contact structures of substantially rectangular shape contact the at least six gate structures.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: November 27, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 10074640
    Abstract: A method is disclosed for defining a multiple patterned cell layout for use in an integrated circuit design. A layout is defined for a level of a cell in accordance with a dynamic array architecture so as to include a number of layout features. The number of layout features are linear-shaped and commonly oriented. The layout is split into a number of sub-layouts for the level of the cell. Each of the number of layout features in the layout is allocated to any one of the number of sub-layouts. Also, the layout is split such that each sub-layout is independently fabricatable. The sub-layouts for the level of the cell are stored on a computer readable medium.
    Type: Grant
    Filed: April 25, 2017
    Date of Patent: September 11, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 10020321
    Abstract: A first PMOS transistor is defined by a gate electrode extending along a first gate electrode track. A first NMOS transistor is defined by a gate electrode extending along a second gate electrode track. A second PMOS transistor is defined by a gate electrode extending along the second gate electrode track. A second NMOS transistor is defined by a gate electrode extending along the first gate electrode track. The gate electrodes of the first PMOS transistor and the first NMOS transistor are electrically connected to a first gate node. The gate electrodes of the second PMOS transistor and the second NMOS transistor are electrically connected to a second gate node. Each of the first PMOS transistor, the first NMOS transistor, the second PMOS transistor, and the second NMOS transistor has a respective diffusion terminal electrically connected to a common output node.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: July 10, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 9917056
    Abstract: A layer of a mask material is deposited on a substrate. A beam of energy is scanned across the mask material in a rasterized linear pattern and in accordance with a scan pitch that is based on a pitch of conductive structure segments to be formed on the substrate. The beam of energy is defined to transform the mask material upon which the beam of energy is incident into a removable state. During scanning the beam of energy across the mask material, the beam of energy is turned on at locations where a conductive structure is to be formed on the substrate, and the beam of energy is turned off at locations where a conductive structure is not to be formed on the substrate.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: March 13, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 9910950
    Abstract: A semiconductor chip is defined to include a logic block area having a first chip level in which layout features are placed according to a first virtual grate, and a second chip level in which layout features are placed according to a second virtual grate. A rational spatial relationship exists between the first and second virtual grates. A number of cells are placed within the logic block area. Each of the number of cells is defined according to an appropriate one of a number of cell phases. The appropriate one of the number of cell phases causes layout features in the first and second chip levels of a given placed cell to be aligned with the first and second virtual grates as positioned within the given placed cell.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: March 6, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Jonathan R. Quandt, Scott T. Becker, Dhrumil Gandhi
  • Patent number: 9905576
    Abstract: Gate structures are positioned within a region in accordance with a gate horizontal grid that includes at least seven gate gridlines separated from each other by a gate pitch of less than or equal to about 193 nanometers. Each gate structure has a substantially rectangular shape with a width of less than or equal to about 45 nanometers and is positioned to extend lengthwise along a corresponding gate gridline. Each gate gridline has at least one gate structure positioned thereon. A first-metal layer is formed above top surfaces of the gate structures within the region and includes first-metal structures positioned in accordance with a first-metal vertical grid that includes at least eight first-metal gridlines. Each first-metal structure has a substantially rectangular shape and is positioned to extend along a corresponding first-metal gridline. At least six contact structures of substantially rectangular shape contact the at least six gate structures.
    Type: Grant
    Filed: September 6, 2017
    Date of Patent: February 27, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 9871056
    Abstract: A first conductive structure forms gate electrodes of a first transistor of a first transistor type and a first transistor of a second transistor type. A second conductive structure forms a gate electrode of a second transistor of the first transistor type. A third conductive structure forms a gate electrode of a second transistor of the second transistor type. A fourth conductive structure forms a gate electrode of a third transistor of the first transistor type. A fifth conductive structure forms a gate electrode of a third transistor of the second transistor type. A sixth conductive structure forms gate electrodes of a fourth transistor of the first transistor type and a fourth transistor of the second transistor type. The second and third transistors of the first transistor type and the second and third transistors of the second transistor type are electrically connected to form a cross-coupled transistor configuration.
    Type: Grant
    Filed: December 23, 2016
    Date of Patent: January 16, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 9859277
    Abstract: An integrated circuit includes a gate electrode level region that includes a plurality of linear-shaped conductive structures. Each of the plurality of linear-shaped conductive structures is defined to extend lengthwise in a first direction. Some of the plurality of linear-shaped conductive structures form one or more gate electrodes of corresponding transistor devices. A local interconnect conductive structure is formed between two of the plurality of linear-shaped conductive structures so as to extend in the first direction along the two of the plurality of linear-shaped conductive structures.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: January 2, 2018
    Assignee: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 9818747
    Abstract: A number of first hard mask portions are formed on a dielectric layer to vertically shadow a respective one of a number of underlying gate structures. A number of second hard mask filaments are formed adjacent to each side surface of each first hard mask portion. A width of each second hard mask filament is set to define an active area contact-to-gate structure spacing. A first passage is etched between facing exposed side surfaces of a given pair of neighboring second hard mask filaments and through a depth of the semiconductor wafer to an active area. A second passage is etched through a given first hard mask portion and through a depth of the semiconductor wafer to a top surface of the underlying gate structure. An electrically conductive material is deposited within both the first and second passages to respectively form an active area contact and a gate contact.
    Type: Grant
    Filed: March 8, 2016
    Date of Patent: November 14, 2017
    Assignee: Tela Innovations, Inc.
    Inventor: Michael C. Smayling
  • Patent number: 9779200
    Abstract: A rectangular interlevel connector array (RICA) is defined in a semiconductor chip. To define the RICA, a virtual grid for interlevel connector placement is defined to include a first set of parallel virtual lines that extend across the layout in a first direction, and a second set of parallel virtual lines that extend across the layout in a second direction perpendicular to the first direction. A first plurality of interlevel connector structures are placed at respective gridpoints in the virtual grid to form a first RICA. The first plurality of interlevel connector structures of the first RICA are placed to collaboratively connect a first conductor channel in a first chip level with a second conductor channel in a second chip level. A second RICA can be interleaved with the first RICA to collaboratively connect third and fourth conductor channels that are respectively interleaved with the first and second conductor channels.
    Type: Grant
    Filed: June 13, 2016
    Date of Patent: October 3, 2017
    Assignee: Tela Innovations, Inc.
    Inventors: Daryl Fox, Scott T. Becker
  • Patent number: 9754878
    Abstract: A plurality of regular wires are formed within a given chip level, each having a linear-shape with a length extending in a first direction and a width extending in a second direction perpendicular to the first direction. The plurality of regular wires are positioned according to a fixed pitch such that a distance as measured in the second direction between lengthwise centerlines of any two regular wires is an integer multiple of the fixed pitch. At least one irregular wire is formed within the given chip level and within a region bounded by the plurality of regular wires. Each irregular wire has a linear-shape with a length extending in the first direction and a width extending in the second direction. A distance as measured in the second direction between lengthwise centerlines of any irregular wire and any regular wire is not equal to an integer multiple of the fixed pitch.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: September 5, 2017
    Assignee: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, James Mali, Carole Lambert, Scott T. Becker, Brian Reed