Patents Assigned to Tela Innovations, Inc.
  • Patent number: 8785978
    Abstract: A semiconductor device includes a cross-coupled transistor configuration formed by first and second PMOS transistors defined over first and second p-type diffusion regions, and by first and second NMOS transistors defined over first and second n-type diffusion regions, with each diffusion region electrically connected to a common node. Gate electrodes of the PMOS and NMOS transistors are formed by conductive features which extend in only a first parallel direction. At least a portion of each of the first and second p-type diffusion regions are formed over a first common line of extent that extends perpendicular to the first parallel direction. The first and second n-type diffusion regions are formed in a spaced apart manner relative to the first parallel direction, such that no single line of extent that extends across the substrate perpendicular to the first parallel direction intersects both the first and second n-type diffusion regions.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 22, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Publication number: 20140197543
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Patent number: 8772839
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. A gate electrode level region is formed in accordance with a virtual grate defined by virtual lines that extend in only a first parallel direction, such that an equal perpendicular spacing exists between adjacent ones of the virtual lines. Each of a number of conductive features within the gate electrode level region is fabricated from a respective originating rectangular-shaped layout feature having a centerline aligned with a virtual line of the virtual grate. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and second NMOS transistor devices are electrically connected, and the gate electrodes of the second PMOS and first NMOS transistor devices are electrically connected.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: July 8, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Publication number: 20140175565
    Abstract: A method is disclosed for defining a multiple patterned cell layout for use in an integrated circuit design. A layout is defined for a level of a cell in accordance with a dynamic array architecture so as to include a number of layout features. The number of layout features are linear-shaped and commonly oriented. The layout is split into a number of sub-layouts for the level of the cell. Each of the number of layout features in the layout is allocated to any one of the number of sub-layouts. Also, the layout is split such that each sub-layout is independently fabricatable. The sub-layouts for the level of the cell are stored on a computer readable medium.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 8759882
    Abstract: An integrated circuit device includes a plurality of dynamic array sections, each of which includes three or more linear conductive segments formed within its gate electrode level in a parallel manner to extend lengthwise in a first direction. An adjoining pair of dynamic array sections are positioned to have co-located portions of outer peripheral boundary segments extending perpendicular to the first direction. Some of the three or more linear conductive segments within the gate electrode levels of the adjoining pair of dynamic array sections are co-aligned in the first direction and separated by an end-to-end spacing that spans the co-located portions of outer peripheral boundary segments of the adjoining pair of dynamic array sections. Each of these end-to-end spacings is sized to ensure that each gate electrode level manufacturing assurance halo portion of the first adjoining pair of dynamic array sections is devoid of the co-aligned linear conductive segments.
    Type: Grant
    Filed: January 14, 2011
    Date of Patent: June 24, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Patent number: 8759985
    Abstract: A rectangular interlevel connector array (RICA) is defined in a semiconductor chip. To define the RICA, a virtual grid for interlevel connector placement is defined to include a first set of parallel virtual lines that extend across the layout in a first direction, and a second set of parallel virtual lines that extend across the layout in a second direction perpendicular to the first direction. A first plurality of interlevel connector structures are placed at respective gridpoints in the virtual grid to form a first RICA. The first plurality of interlevel connector structures of the first RICA are placed to collaboratively connect a first conductor channel in a first chip level with a second conductor channel in a second chip level. A second RICA can be interleaved with the first RICA to collaboratively connect third and fourth conductor channels that are respectively interleaved with the first and second conductor channels.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: June 24, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Daryl Fox, Scott T. Becker
  • Publication number: 20140167117
    Abstract: A semiconductor device is disclosed to include a plurality of cells. Each of the cells has a respective outer cell boundary defined to circumscribe the cell in an orthogonal manner. Also, each of the cells includes circuitry for performing one or more logic functions. This circuitry includes a plurality of conductive features defined in one or more levels of the cell. One or more of the conductive features in at least one level of a given cell is an encroaching feature positioned to encroach by an encroachment distance into an exclusion zone. The exclusion zone occupies an area within the cell defined by an exclusion distance extending perpendicularly inward into the given cell from a first segment of the outer cell boundary. The exclusion distance is based on a design rule distance representing a minimum separation distance required between conductive features in adjacently placed cells on the semiconductor device.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Jonathan R. Quandt, Scott T. Becker, Dhrumil Gandhi
  • Publication number: 20140167183
    Abstract: A layer of a mask material is deposited on a substrate. A beam of energy is scanned across the mask material in a rasterized linear pattern and in accordance with a scan pitch that is based on a pitch of conductive structure segments to be formed on the substrate. The beam of energy is defined to transform the mask material upon which the beam of energy is incident into a removable state. During scanning the beam of energy across the mask material, the beam of energy is turned on at locations where a conductive structure is to be formed on the substrate, and the beam of energy is turned off at locations where a conductive structure is not to be formed on the substrate.
    Type: Application
    Filed: February 21, 2014
    Publication date: June 19, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Publication number: 20140167185
    Abstract: An integrated circuit includes a gate electrode level region that includes a plurality of linear-shaped conductive structures. Each of the plurality of linear-shaped conductive structures is defined to extend lengthwise in a first direction. Some of the plurality of linear-shaped conductive structures form one or more gate electrodes of corresponding transistor devices. A local interconnect conductive structure is formed between two of the plurality of linear-shaped conductive structures so as to extend in the first direction along the two of the plurality of linear-shaped conductive structures.
    Type: Application
    Filed: February 24, 2014
    Publication date: June 19, 2014
    Applicant: Tela Innovations, Inc.
    Inventors: Michael C. Smayling, Scott T. Becker
  • Patent number: 8756555
    Abstract: A standard cell library is disclosed. The standard cell library contains cells wherein at least one transistor in at least one cell is annotated for gate length biasing. Gate length biasing includes the modification of the gate length, so as to change the speed or power consumption of the modified gate length. The standard cell library is one used in the manufacturing of semiconductor devices (e.g., that result as semiconductor chips), by way of fabricating features defined on one or more layouts of geometric shapes. The annotations serve to identify which ones of the transistor gate features are to be modified before using the geometric shapes for manufacturing the semiconductor device.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 17, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Puneet Gupta, Andrew B. Kahng
  • Patent number: 8756551
    Abstract: A method is provided for designing an integrated circuit device. The method includes placing four transistors of a first transistor type and four transistors of a second transistor type within a gate electrode level. Each of the transistors includes a respective linear-shaped gate electrode segment positioned to extend lengthwise in a first direction. The transistors of the first and second transistor types are placed according to a substantially equal centerline-to-centerline spacing as measured perpendicular to the first direction. A first linear conductive segment is placed to electrically connect the gate electrodes of the first transistors of the first and second transistor types. A second linear conductive segment is placed to electrically connect the gate electrodes of the fourth transistors of the first and second transistor types. A third linear conductive segment is placed beside either the first or second linear conductive segment.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: June 17, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Michael C. Smayling
  • Publication number: 20140159772
    Abstract: An exclusive-or circuit includes a pass gate controlled by a second input node. The pass gate is connected to pass through a version of a logic state present at a first input node to an output node when so controlled. A transmission gate is controlled by the first input node. The transmission gate is connected to pass through a version of the logic state present at the second input node to the output node when so controlled. Pullup logic is controlled by both the first and second input nodes. The pullup logic is connected to drive the output node low when both the first and second input nodes are high. An exclusive-nor circuit is defined similar to the exclusive-or circuit, except that the pullup logic is replaced by pulldown logic which is connected to drive the output node high when both the first and second input nodes are high.
    Type: Application
    Filed: February 14, 2014
    Publication date: June 12, 2014
    Applicant: Tela Innovations, Inc.
    Inventor: Scott T. Becker
  • Patent number: 8742463
    Abstract: A semiconductor device includes first and second p-type diffusion regions, and first and second n-type diffusion regions that are each electrically connected to a common node. A gate electrode level region is formed in accordance with a virtual grate defined by virtual lines that extend in only a first parallel direction, such that an equal perpendicular spacing exists between adjacent ones of the virtual lines. Conductive features are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of virtual lines of the virtual grate. The conductive features form gate electrodes of first and second PMOS transistor devices, and first and second NMOS transistor devices. The gate electrodes of the first PMOS and second NMOS transistor devices are electrically connected, and the gate electrodes of the second PMOS and first NMOS transistor devices are electrically connected.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: June 3, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8742462
    Abstract: First and second PMOS transistors are defined over first and second p-type diffusion regions. First and second NMOS transistors are defined over first and second n-type diffusion regions. Each diffusion region is electrically connected to a common node. Gate electrodes are formed from conductive features that are each defined within any one gate level channel that is uniquely associated with and defined along one of a number of parallel gate electrode tracks. At least a portion of each of the first and second p-type diffusion regions are formed over a first common line of extent that extends perpendicular to the first parallel direction. The first and second n-type diffusion regions are formed in a spaced apart manner relative to the first parallel direction, such that no single line of extent that extends across the substrate perpendicular to the first parallel direction intersects both the first and second n-type diffusion regions.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: June 3, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8735995
    Abstract: A first gate level feature forms gate electrodes of a first transistor of a first transistor type and a first transistor of a second transistor type. A second gate level feature forms a gate electrode of a second transistor of the first transistor type. A third gate level feature forms a gate electrode of a second transistor of the second transistor type. The gate electrodes of the second transistors of the first and second transistor types are electrically connected to each other. The gate electrodes of the second transistors of the first and second transistor types are positioned on opposite sides of a gate electrode track along which the gate electrodes of the first transistors of the first and second transistor types are positioned.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 27, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8735944
    Abstract: A semiconductor device includes a cross-coupled transistor configuration formed by first and second PMOS transistors defined over first and second p-type diffusion regions, and by first and second NMOS transistors defined over first and second n-type diffusion regions, with each diffusion region electrically connected to a common node. Gate electrodes of the PMOS and NMOS transistors are formed by conductive features that are each defined within any one gate level channel. At least a portion of the first p-type diffusion region and at least a portion of the second p-type diffusion region are formed over a first common line of extent that extends perpendicular to the first parallel direction. Also, at least a portion of the first n-type diffusion region and at least a portion of the second n-type diffusion region are formed over a second common line of extent that extends perpendicular to the first parallel direction.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 27, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8729643
    Abstract: A first conductive gate level feature forms a gate electrode of a first transistor of a first transistor type. A second conductive gate level feature forms a gate electrode of a first transistor of a second transistor type. A third conductive gate level feature forms a gate electrode of a second transistor of the first transistor type. A fourth conductive gate level feature forms a gate electrode of a second transistor of the second transistor type. A first contact connects to the first conductive gate level feature over an inner non-diffusion region. The first and fourth conductive gate level features are electrically connected through the first contact. A second contact connects to the third conductive gate level feature over the inner non-diffusion region and is offset from the first contact. The third and second conductive gate level features are electrically connected through the second contact.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 20, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8729606
    Abstract: Each of first and second PMOS transistors, and first and second NMOS transistors has a respective diffusion terminal with a direct electrical connection to a common node, and has a respective gate electrode defined within any one gate level channel. Each gate level channel is uniquely associated with and defined along one of a number of parallel oriented gate electrode tracks. The first PMOS transistor gate electrode is electrically connected to the second NMOS transistor electrode. The second PMOS transistor gate electrode is electrically connected to the first NMOS transistor gate electrode. The first and second PMOS transistors, and the first and second NMOS transistors together define a cross-coupled transistor configuration having commonly oriented gate electrodes formed from respective rectangular-shaped layout features.
    Type: Grant
    Filed: April 5, 2010
    Date of Patent: May 20, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert
  • Patent number: 8701071
    Abstract: A global placement grating (GPG) is defined for a chip level to include a set of parallel and evenly spaced virtual lines. At least one virtual line of the GPG is positioned to intersect each contact that interfaces with the chip level. A number of subgratings are defined. Each subgrating is a set of equally spaced virtual lines of the GPG that supports a common layout shape run length thereon. The layout for the chip level is partitioned into subgrating regions. Each subgrating region has any one of the defined subgratings allocated thereto. Layout shapes placed within a given subgrating region in the chip level are placed in accordance with the subgrating allocated to the given subgrating region. Non-standard layout shape spacings at subgrating region boundaries can be mitigated by layout shape stretching, layout shape insertion, and/or subresolution shape insertion, or can be allowed to exist in the final layout.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: April 15, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Stephen Kornachuk, Jim Mali, Carole Lambert, Scott T. Becker
  • Patent number: 8680583
    Abstract: A semiconductor device includes a cross-coupled transistor configuration formed by first and second PMOS transistors defined over first and second p-type diffusion regions, and by first and second NMOS transistors defined over first and second n-type diffusion regions, with each diffusion region electrically connected to a common node. Gate electrodes of the PMOS and NMOS transistors are formed by conductive features which extend in only a first parallel direction. At least a portion of the first p-type diffusion region and at least a portion of the second p-type diffusion region are formed over a first common line of extent that extends perpendicular to the first parallel direction. Also, at least a portion of the first n-type diffusion region and at least a portion of the second n-type diffusion region are formed over a second common line of extent that extends perpendicular to the first parallel direction.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: March 25, 2014
    Assignee: Tela Innovations, Inc.
    Inventors: Scott T. Becker, Jim Mali, Carole Lambert