Patents Assigned to Tepha, Inc.
-
Patent number: 9532867Abstract: Absorbable implants for breast surgery that conform to the breast parenchyma and surrounding chest wall have been developed. These implants support newly lifted breast parenchyma, and/or a breast implant. The implants have mechanical properties sufficient to support a reconstructed breast, and allow the in-growth of tissue into the implant as it degrades. The implants have a strength retention profile allowing the support of the breast to be transitioned from the implant to regenerated host tissue, without significant loss of support. Three-dimensional implants for use in minimally invasive mastopexy/breast reconstruction procedures are also described, that confer shape to a patient's breast. These implants are self-reinforced, can be temporarily deformed, implanted in a suitably dissected tissue plane, and resume their preformed three-dimensional shape. The implants are preferably made from poly-4-hydroxybutyrate (P4HB) and copolymers thereof.Type: GrantFiled: July 11, 2014Date of Patent: January 3, 2017Assignee: Tepha, Inc.Inventors: Fabio Felix, Antonio Fosco, David P. Martin, Arikha Moses, Bruce Van Natta, Said Rizk, Simon F. Williams
-
Patent number: 9511169Abstract: Continuous processing methods are used for making absorbable polymeric non-wovens, with anisotropic properties, improved mechanical properties and without substantial loss of polymer molecular weight during processing. The method includes producing dry spun-non wovens from a polymer, and collecting the fibers using a rotating collector plate, preferably a rotating cylinder, to collect the non-woven instead of a fiberglass stationary collector plate. The non-wovens can be used for a variety of purposes including fabrication of medical devices.Type: GrantFiled: May 16, 2014Date of Patent: December 6, 2016Assignee: Tepha, Inc.Inventors: Kai Guo, Fabio Felix, David P. Martin
-
Patent number: 9480780Abstract: Compositions of P4HB with high purity have been developed. The compositions are prepared by washing P4HB biomass prior to solvent extraction, and precipitating P4HB from solution. The same solvent is preferably used to wash the P4HB biomass, and as a non-solvent to precipitate the polymer from a P4HB solvent solution. The highly pure P4HB compositions are suitable for preparing implants. The implants may be used for the repair of soft and hard tissues.Type: GrantFiled: October 31, 2014Date of Patent: November 1, 2016Assignee: Tepha, Inc.Inventors: David P. Martin, Simon F. Williams
-
Patent number: 9457127Abstract: Methods to produce micro-fiber webs containing fibers of 4-hydroxybutyrate or copolymers thereof with average diameters from 0.01 to 100 ?m, have been developed. The micro-fiber webs are produced by centrifugal spinning. These methods allow the micro-fiber webs to be produced without substantial loss of the polymer weight average molecular weight. Webs containing micro-fibers of poly-4-hydroxybutyrate or copolymer thereof, are made by centrifugal spinning. The micro-fibers have average diameters ranging from 0.01 to 100 ?m and contain crimped fibers with a higher elongation at break fibers when compared to fibers derived by melt-blown extrusion, dry spinning and electrospinning. The fibers of the micro-fiber webs have a high degree of orientation. These micro-fiber webs can be used for a variety of purposes including fabrication of medical devices.Type: GrantFiled: March 18, 2015Date of Patent: October 4, 2016Assignee: Tepha, Inc.Inventors: David P. Martin, Said Rizk
-
Patent number: 9333066Abstract: Absorbable polyester fibers, braids, and surgical meshes with prolonged strength retention have been developed. These devices are preferably derived from biocompatible copolymers or homopolymers of 4-hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available, and could offer additional benefits such as anti-adhesion properties, reduced risks of infection or other post-operative problems resulting from absorption and eventual elimination of the device, and competitive cost. The devices may also be particularly suitable for use in pediatric populations where their absorption should not hinder growth, and provide in all patient populations wound healing with long-term mechanical stability. The devices may additionally be combined with autologous, allogenic and/or xenogenic tissues to provide implants with improved mechanical, biological and handling properties.Type: GrantFiled: May 13, 2014Date of Patent: May 10, 2016Assignee: Tepha, Inc.Inventors: David P. Martin, Said Rizk, Ajay Ahuja, Simon F. Williams
-
Patent number: 9326841Abstract: Biocompatible coatings and spin finishes that can be applied to polyhydroxyalkanoate (PHA) polymers, and medical devices made from PHA polymers, have been developed. The coatings impart good lubricity to PHA polymers, particularly to fibers and braids made from these materials, making the coatings ideal for use on medical devices such as PHA braided sutures. The spin finishes can be applied to PHA fibers to facilitate their manufacture, and also for their conversion to other products, including medical textiles. The spin finishes serve to protect multifilament fiber bundles, and keep them intact following extrusion, and also to impart lubricity to the fiber bundles and monofilament fibers so that they are not damaged in subsequent processing steps particularly in textile processing. The coating reduces tissue drag of, for example, braided sutures.Type: GrantFiled: October 18, 2013Date of Patent: May 3, 2016Assignee: Tepha, Inc.Inventors: David P. Martin, Said Rizk, Jon I. Montcrieff, Dennis W. Connelly
-
Patent number: 9302029Abstract: Compositions of P4HB (poly-4-hydroxybutyrate) and copolymers thereof, have been developed for pultrusion, as well as processes to produce profiles from these compositions by pultrusion. These pultrusion processes provide profiles without causing structural damage to the surface of the profile. The profiles may be used in medical applications. These compositions include P4HB, and copolymers thereof, having intrinsic viscosities less than 3.2 dl/g but greater than 0.8 dl/g. The profile may be formed using conditions such as: pull rate of 0.1 to 100 mm/min, die temperature of up to 95° C., rod stock temperature up to 95° C., draw ratio of up to 100×, pulling force of greater than 10 MPa, and clamping pressure at least 10% higher than the pulling force. Preferably, the profile is formed by pulling the rod stock through a series of dies placed at intervals with the hole sizes decreasing in diameter by 0.1 to 10 mm.Type: GrantFiled: October 30, 2014Date of Patent: April 5, 2016Assignee: Tepha, Inc.Inventors: Amit Ganatra, Bhavin Shah, Said Rizk, David P. Martin, Simon F. Williams
-
Patent number: 9290612Abstract: Compositions of P4HB with high purity have been developed. The compositions are prepared by washing P4HB biomass prior to solvent extraction, and precipitating P4HB from solution. The same solvent is preferably used to wash the P4HB biomass, and as a non-solvent to precipitate the polymer from a P4HB solvent solution. The highly pure P4HB compositions are suitable for preparing implants. The implants may be used for the repair of soft and hard tissues.Type: GrantFiled: March 13, 2013Date of Patent: March 22, 2016Assignee: Tepha, Inc.Inventors: David P. Martin, Kai Guo, Simon F. Williams
-
Patent number: 9277986Abstract: A mastopexy implant for maintaining the breast in an elevated and aesthetically pleasing position includes a lower pole support comprising end portions which may be affixed to the chest wall or to a previously installed upper suspension strut. The implant is loaded in an insertion device. The insertion device is inserted through a small incision and into a subcutaneous pocket created in an inferior half of the breast. The lower pole support may have various constructs and in one embodiment includes a unitary conformable mesh having a plurality of arm or band members which are attached across the breast parenchyma and to the chest wall.Type: GrantFiled: April 9, 2014Date of Patent: March 8, 2016Assignee: Tepha, Inc.Inventors: Arikha Moses, Emily Stires, Anthony Natale
-
Patent number: 9216152Abstract: Compositions and methods of making and using of microparticle compositions that provide faster flow or improved injectability through smaller or small-diameter needles have been developed. Notably, the microparticle compositions can be successfully delivered or administered through smaller-diameter needles than other microparticle compositions prepared from biocompatible or biodegradable polymers including, for example, poly(lactide), poly(lactide-co-glycolide), polycaprolactone, or poly-3-hydroxybutyrate. The microparticle compositions can exhibit a higher solids loading for a given needle size and/or faster flow through needles than other microparticle compositions. Further, blending or mixing the polymer of the microparticle composition with other polymer formulations can enhance the injectability of the resulting formulation.Type: GrantFiled: June 29, 2009Date of Patent: December 22, 2015Assignees: Tepha, Inc., Evonik CorporationInventors: Peter Markland, Gary Anthony Winchester, Thomas Robert Tice, David P. Martin
-
Patent number: 9162010Abstract: Drug delivery systems and biocompatible coatings for use with implantable stimulation devices such as cochlear implants have been developed. These drug delivery systems and coatings comprise polyhydroxyalkanoate (PHA) polymers and copolymers. The drug delivery systems may be used to deliver pharmacologically active substances, for example, directly from a cochlear implant to the inner ear. The coatings can impart lubricity to cochlear devices for ease of insertion of the electrodes. In the preferred embodiment, the drug delivery system comprises a polyhydroxyalkanoate polymer, and in the most preferred embodiment, the PHA polymer comprises poly(4-hydroxybutyrate) (P(4HB)) or copolymer thereof. A particularly preferred embodiment is where the silicone sheath of the cochlear implant electrodes has been surface modified, and coated with P(4HB), and the P(4HB) either contains a pharmacologically active substance or has been coated with such a substance.Type: GrantFiled: October 28, 2011Date of Patent: October 20, 2015Assignee: Tepha, Inc.Inventors: Thomas Lenarz, Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Simon Williams, David Martin
-
Patent number: 9149561Abstract: Compositions of P4HB and processes to injection mold these compositions have been developed. These compositions are prepared from P4HB polymers and blends having intrinsic viscosities less than 3.2 dl/g but greater than 0.8 dl/g, moisture contents of less than 0.5% by weight, and more preferably less than 0.05% by weight, and using a polymer melt temperature during molding of at least 150° C. A preferred embodiment comprises a P4HB molding with an intrinsic viscosity of less than 3.2 dl/g that degrades rapidly in vivo.Type: GrantFiled: March 13, 2013Date of Patent: October 6, 2015Assignee: Tepha, Inc.Inventors: Said Rizk, Dennis W. Connelly, Matthew Bernasconi, Andrew J. Carter, David P. Martin, Simon F. Williams
-
Patent number: 9125719Abstract: Absorbable polyester fibers, braids, and surgical meshes with prolonged strength retention have been developed. These devices are preferably derived from biocompatible copolymers or homopolymers of 4-hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available, and could offer additional benefits such as anti-adhesion properties, reduced risks of infection or other post-operative problems resulting from absorption and eventual elimination of the device, and competitive cost. The devices may also be particularly suitable for use in pediatric populations where their absorption should not hinder growth, and provide in all patient populations wound healing with long-term mechanical stability. The devices may additionally be combined with autologous, allogenic and/or xenogenic tissues to provide implants with improved mechanical, biological and handling properties.Type: GrantFiled: September 8, 2011Date of Patent: September 8, 2015Assignee: Tepha, Inc.Inventors: David P. Martin, Said Rizk, Ajay Ahuja, Simon F. Williams
-
Patent number: 8979921Abstract: Absorbable stents and absorbable stent coatings have been developed with improved properties. These devices preferably comprise biocompatible copolymers or homopolymers of 4-hydroxybutyrate, and optionally polylactic acid and other absorbable polymers and additives. Compositions of these materials can be used to make absorbable stents that provide advantageous radial strengths, resistance to recoil and creep, can be plastically expanded on a balloon catheter, and can be deployed rapidly in vivo. Stent coatings derived from these materials provide biocompatible, uniform coatings that are ductile, and can be expanded without the coating cracking and/or delaminating and can be used as a coating matrix for drug incorporation.Type: GrantFiled: October 14, 2008Date of Patent: March 17, 2015Assignee: Tepha, Inc.Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, David P. Martin, Simon F. Williams
-
Publication number: 20150073444Abstract: Absorbable polyester fibers, braids, and surgical meshes with prolonged strength retention have been developed. These devices are preferably derived from biocompatible copolymers or homopolymers of 4-hydroxybutyrate. These devices provide a wider range of in vivo strength retention properties than are currently available, and could offer additional benefits such as anti-adhesion properties, reduced risks of infection or other post-operative problems resulting from absorption and eventual elimination of the device, and competitive cost. The devices may also be particularly suitable for use in pediatric populations where their absorption should not hinder growth, and provide in all patient populations wound healing with long-term mechanical stability. The devices may additionally be combined with autologous, allogenic and/or xenogenic tissues to provide implants with improved mechanical, biological and handling properties.Type: ApplicationFiled: April 1, 2014Publication date: March 12, 2015Applicant: Tepha, Inc.Inventors: David P. Martin, Said Rizk, Ajay Ahuja, Simon F. Williams
-
Patent number: 8961591Abstract: Absorbable stents and absorbable stent coatings have been developed with improved properties. These devices preferably comprise biocompatible copolymers or homopolymers of 4-hydroxybutyrate, and optionally poly-L-lactic acid and other absorbable polymers and additives. Compositions of these materials can be used to make absorbable stents that provide advantageous radial strengths, resistance to recoil and creep, can be plastically expanded on a balloon catheter, and can be deployed rapidly in vivo. Stent coatings derived from these materials provide biocompatible, uniform coatings that are ductile, and can be expanded without the coating cracking and/or delarmnating and can be used as a coating matrix for drug incorporation.Type: GrantFiled: July 17, 2009Date of Patent: February 24, 2015Assignee: Tepha, Inc.Inventors: Klaus-Peter Schmitz, Detlef Behrend, Katrin Sternberg, Niels Grabow, David P. Martin, Simon F. Williams
-
Publication number: 20150018878Abstract: Compositions and materials for making soft suture anchors comprising materials that improve osteointegration have been developed. These compositions and materials comprise bioceramics, resorbable materials, and combinations thereof. A preferred embodiment comprises a soft suture anchor comprising a resorbable ceramic and a resorbable suture.Type: ApplicationFiled: July 10, 2014Publication date: January 15, 2015Applicant: Tepha, Inc.Inventors: Said Rizk, David P. Martin, Matthew Bernasconi, Simon F. Williams
-
Publication number: 20140363672Abstract: Biocompatible coatings and spin finishes that can be applied to polyhydroxyalkanoate (PHA) polymers, and medical devices made from PHA polymers, have been developed. The coatings impart good lubricity to PHA polymers, particularly to fibers and braids made from these materials, making the coatings ideal for use on medical devices such as PHA braided sutures. The spin finishes can be applied to PHA fibers to facilitate their manufacture, and also for their conversion to other products, including medical textiles. The spin finishes serve to protect multifilament fiber bundles, and keep them intact following extrusion, and also to impart lubricity to the fiber bundles and monofilament fibers so that they are not damaged in subsequent processing steps particularly in textile processing. The coating reduces tissue drag of, for example, braided sutures.Type: ApplicationFiled: May 15, 2014Publication date: December 11, 2014Applicant: Tepha, Inc.Inventors: David P. Martin, Said Rizk, Jon I. Montcrieff, Dennis W. Connelly
-
Patent number: 8858629Abstract: A mastopexy implant for maintaining the breast in an elevated and aesthetically pleasing position includes a lower pole support comprising end portions which may be affixed to the chest wall or to a previously installed upper suspension strut. The implant is loaded in an insertion device. The insertion device is inserted through a small incision and into a subcutaneous pocket created in an inferior half of the breast. The lower pole support may have various constructs and in one embodiment includes a unitary conformable mesh having a plurality of arm or band members which are attached across the breast parenchyma and to the chest wall.Type: GrantFiled: March 7, 2012Date of Patent: October 14, 2014Assignee: Tepha, Inc.Inventors: Arikha Moses, Emily Stires, Anthony Natale
-
Publication number: 20140275325Abstract: Compositions of P4HB with high purity have been developed. The compositions are prepared by washing P4HB biomass prior to solvent extraction, and precipitating P4HB from solution. The same solvent is preferably used to wash the P4HB biomass, and as a non-solvent to precipitate the polymer from a P4HB solvent solution. The highly pure P4HB compositions are suitable for preparing implants. The implants may be used for the repair of soft and hard tissues.Type: ApplicationFiled: March 13, 2013Publication date: September 18, 2014Applicant: Tepha, Inc.Inventors: David P. Martin, Kai Guo, Simon F. Williams