Patents Assigned to Texas A & M University
  • Publication number: 20230218718
    Abstract: The present disclosure relates to methods of treating Coronavirus-Associated Lung Damage (CALD) and cytokine storm using CALD-treating polypeptides. The methods can involve administering serum amyloid P-component to a patient suffering from CALD or cytokine storm.
    Type: Application
    Filed: June 7, 2021
    Publication date: July 13, 2023
    Applicant: The Texas A&M University System
    Inventors: Richard H. GOMER, Darrell PILLING, Tejas KARHADKAR
  • Patent number: 11690919
    Abstract: Endolysosomal targeting conjugates that are engineered to deliver cargo molecules such as cytotoxic drugs or imaging labels with improved efficiency to late endosomes and/or lysosomes in target cells such as tumor cells are described. The endolysosomal targeting conjugate includes a targeting component and a cargo component. The targeting component is configured to bind to a cell surface molecule of a target cell and the cargo component includes a cargo molecule. The targeting component and the cargo component may be fused by a covalent bond or associated by a non-covalent bond. The targeting component may bind to the cell surface molecule or the cargo component with higher affinity in the extracellular space than in an endolysosomal compartment of the target cell.
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: July 4, 2023
    Assignees: The Texas A&M University System, Board of Regents of the University of Texas System
    Inventors: Elizabeth Sally Ward Ober, Raimund Johannes Ober, Jeffrey Che-Wei Kang, Wei Sun, Ran Li
  • Patent number: 11692120
    Abstract: Provided herein are drilling muds, including water-based drilling muds. The components of the drilling muds are a degradable fluid loss additive, for example, synthetic degradable nanoparticles, a clay mineral, for example, a smectite, and a base fluid, for example, water. Also provide are methods for preventing leak-off during a drilling operation and for automatically cleaning-up filter cake after completion of a drilling process both of which utilize the drilling muds and water-based drilling muds.
    Type: Grant
    Filed: September 18, 2020
    Date of Patent: July 4, 2023
    Assignee: Texas A&M University
    Inventors: Jenn-Tai Liang, Hulli Guan
  • Patent number: 11684894
    Abstract: Provided herein are in situ methods for fabricating a mixed-matrix membrane or a mixed-matrix hollow fiber membrane for increasing formation of zeolitic imidazolate framework nanoparticles inside the mixed-matrix membrane. Generally, in the method a polyimide polymer coated onto at least one support is hydrolzed with a base and the poly(amic acid)-salt film formed thereby undergoes ion exchange with a metal ion, treatment of the formed poly(amic acid)-metal salt film with an organic linker to produce metal-organic framework nanoparticles in situ, and imidization of the treated poly(amic acid)-metal salt film produces a polyimide/metal-organic framework mixed-matrix membrane or a mixed-matrix hollow fiber membrane module. Also provided is the mixed-matrix membrane and the polymer mixed-matrix hollow fiber membrane module fabricated by the methods and methods for separating a binary gas mixture via the fabricated mixed-matrix membrane.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: June 27, 2023
    Assignee: Texas A&M University
    Inventors: Hae-Kwon Jeong, Mohamad Rezi Abdul Hamid
  • Patent number: 11685920
    Abstract: Disclosed herein are antisense oligonucleotides that are capable of inducing expression of ubiquitin-protein ligase E3A (UBE3A) from the paternal allele in animal or human neurons. The oligonucleotides target the suppressor of the UBE3A paternal allele by hybridization to SNHG14 long non-coding RNA at the 5?-end of UBE3A-AS, which is downstream of SNORD115-45 snoRNA. Also disclosed are pharmaceutical compositions and methods for treatment of Angelman syndrome.
    Type: Grant
    Filed: November 10, 2021
    Date of Patent: June 27, 2023
    Assignee: The Texas A&M University System
    Inventor: Scott Victor Dindot
  • Publication number: 20230183401
    Abstract: Processes of polymerizing polyolefins and synthesis of activators. The polymerization processes include polymerizing one or more (C2-C12)?-olefin monomers in the presence of at least one catalyst and at least one co-catalyst to produce a polyolefin. The co-catalyst includes a cation and an anion, in which the anion has a structure having a vinyl terminated alkene, one boron atom or more than one boron atoms, and at least four halogen atoms. The anion of the co-catalysts is incorporated into a polymer chain of the polyolefin.
    Type: Application
    Filed: April 30, 2020
    Publication date: June 15, 2023
    Applicants: DOW GLOBAL TECHNOLOGIES LLC, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Richard J. Keaton, Oleg V. Ozerov, Qingheng Lai, Jerzy Klosin, Michael J. Lesniak, David M. Pearson, Todd D. Senecal, William H.H. Woodward, Sukrit Mukhopadhyay, John R. Stutzman, Susan O. Gunther
  • Patent number: 11673663
    Abstract: A multi-modal vehicle includes a frame, a rotor pivotally mounted to the frame, the rotor including a first position and a second position circumferentially spaced from the first position, and a motor coupled to the rotor and configured to rotate the rotor, wherein, when the rotor is disposed in the first position, the rotor is configured to generate lift when actuated by the motor, wherein, when the rotor is disposed in the second position, the rotor is configured to engage a surface to transport the vehicle when actuated by the motor.
    Type: Grant
    Filed: May 21, 2018
    Date of Patent: June 13, 2023
    Assignees: The Texas A&M University System, University of Maryland
    Inventors: Moble Benedict, Hunter Denton, Vikram Hrishikeshavan
  • Patent number: 11674876
    Abstract: The system includes a gas tank. A reference volume is fluidly coupled to the gas tank. A coreholder fluidly is coupled to the reference volume. A sample is disposed in the coreholder. A fluid pump is fluidly coupled to the coreholder. A first pressure transducer is fluidly coupled between the fluid pump and the coreholder. The first pressure transducer measures a confining pressure. A second pressure transducer is fluidly coupled to the coreholder. The second pressure transducer measures upstream pressure within the coreholder.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: June 13, 2023
    Assignee: The Texas A&M University System
    Inventors: Ibrahim Yucel Akkutlu, Ivan C. Aldana
  • Publication number: 20230175839
    Abstract: A method for inspecting a photomask includes scanning the photomask with an interferometric fringe pattern generated by an interferometer, generating an interferogram associated with the photomask in response to scanning the photomask using the interferometer, and detecting one or more geometric parameters of the photomask using the generated interferogram.
    Type: Application
    Filed: December 2, 2022
    Publication date: June 8, 2023
    Applicant: The Texas A&M University System
    Inventor: ChaBum Lee
  • Publication number: 20230173744
    Abstract: Methods and systems of 3D printing non-photocurable thermosetting polymer materials and continuous fiber composites that reduces the manufacturing time and energy required by implementing fast, self-sustaining, and self-propagating, in-situ curing of the polymer and the and continuous fiber composites as the non-photocurable thermosetting polymer materials are being printed.
    Type: Application
    Filed: April 30, 2021
    Publication date: June 8, 2023
    Applicants: TEXAS TECH UNIVERSITY SYSTEM, THE TEXAS A&M UNIVERSITY SYSTEM
    Inventors: Jingjing Qui, Shiren Wang
  • Publication number: 20230174767
    Abstract: A composition includes a thermoplastic polymer and a polyrotaxane. The polyrotaxane includes a plurality of cyclic molecules and a chain polymer passing through the plurality of the cyclic molecules in a skewering manner, at least a part of the hydroxyl groups of the plurality of cyclic molecules being substituted with a hydrophobic group. A group that enhances miscibility of the polyrotaxane to the thermoplastic polymeris bound to at least a part of the hydrophobic groups of each of the plurality of cyclic molecules.
    Type: Application
    Filed: August 28, 2020
    Publication date: June 8, 2023
    Applicants: The Texas A&M University System, The University of Tokyo
    Inventors: Hung-Jue Sue, Chia-Ying Tsai, Glendimar S. Molero, Kohzo Ito, Koichi Mayumi, Shuntaro Uenuma, Shota Ando
  • Patent number: 11667831
    Abstract: Provided herein is a hydraulic fracturing fluid containing enzyme encapsulated hydrogel nanoparticles and a breaker composition of a viscosifier-degrading enzyme encapsulated in the hydrogel nanoparticle. Also provided are methods for hydraulic fracturing utilizing hydrogel nanoparticles encapsulating an enzyme as a breaker to prevent the premature degradation of the fracturing fluid, to improve transport and placement of the proppant and to facilitate subsequent cleaning of the fracturing fluid.
    Type: Grant
    Filed: September 25, 2020
    Date of Patent: June 6, 2023
    Assignee: Texas A&M University
    Inventors: Jenn-Tai Liang, Hulli Guan
  • Publication number: 20230159753
    Abstract: A resin composition is provided. The resin composition includes a rigid polymer resin, a functionalized polyrotaxane, and (optionally) a core-shell polymer. The resin composition may be cured to form a cured thermoset resin. The cured thermoset set has improved mechanical properties relative to a reference cured thermoset. A method of preparing a cured article of the curable resin composition is also provided. The method includes providing the curable resin composition and curing the curable composition.
    Type: Application
    Filed: October 27, 2022
    Publication date: May 25, 2023
    Applicants: The Texas A&M University System, KANEKA CORPORATION
    Inventors: Hung-Jue Sue, Masaya Kotaki, Zewen Zhu
  • Patent number: 11649392
    Abstract: A variety of fluid loss control compositions and methods are provided for controlling fluid loss in a cementing operation. As described herein, polyelectrolyte complex nanoparticles and fluid loss control compositions containing polyelectrolyte complex nanoparticles can be effective for fluid loss control in a variety of cementing operations. Methods of making and methods of using the electrolyte complex nanoparticles and fluid loss control compositions containing polyelectrolyte complex nanoparticles are also provided. The polyelectrolyte complex nanoparticles can include a polycation polymer such as a branched chain polyethylenimine, and a polyanion polymer such as polyacrylic acid or poly(vinylsulfonic) acid. The polyelectrolyte complex nanoparticles can contain additional additives such as metal ions or fluid loss additives such as a cellulose polymer.
    Type: Grant
    Filed: November 3, 2018
    Date of Patent: May 16, 2023
    Assignee: The Texas A&M University System
    Inventors: Ying-Ying Lin, Jenn-Tai Liang, Corbin D. Andersen
  • Patent number: 11648079
    Abstract: An apparatus for surgical lighting is disclosed. The apparatus includes a light emitting element formed with a light source encapsulated within an outer layer. The outer layer includes a biocompatible material. A power supply is coupled to the light source. The apparatus includes an actuating mechanism that controls power from the power supply to the light source to emit light along a surgical area. The light emitting element provides enhanced illumination and other surgical advantages.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: May 16, 2023
    Assignees: Dignity Health, The Texas A&M University System
    Inventors: Clinton Morgan, Peter Nakaji, Sung II Park
  • Patent number: 11642849
    Abstract: Bio-Inks and methods of using compositions comprising the bio-Inks are disclosed. 3-D tissue repair and regeneration through precise and specific formation of biodegradable tissue scaffolds in a tissue site using the bio-inks are also provided. Specific methylacrylated gelatin hydrogels (MAC) and methacrylated chitosan (MACh) preparations formulated with sucrose, a silicate-containing component (such as laponite), and/or a cross-linking agent (such as a photo-initiator or chemical initiator), as well as powdered preparations of these, are also disclosed. Kits containing these preparations are provided for point-of-care tissue repair in vivo. Superior, more complete (up to 99.85% tissue regeneration within 4 weeks applied in situ), and rapid in situ tissue repair and bone formation are also demonstrated.
    Type: Grant
    Filed: July 30, 2019
    Date of Patent: May 9, 2023
    Assignees: The Texas A&M University System, The Board of Regents, The University of Texas System
    Inventors: Venu G. Varanasi, Azhar Ilyas, Philip Roger Kramer, Taha Azimaie, Pranesh B. Aswath, Tugba Cebe
  • Patent number: 11646165
    Abstract: In an embodiment, the present disclosure pertains to a method of creating a supercapacitor. The method includes forming an anode and a cathode, each composed of a substrate having at least one of a lignin, a lignin-based composite, activated carbon, a plant extract, a cellulose by-product, biofuel waste, one or more metals, a metal oxide, a monometallic tungstate, or a bimetallic tungstate, and sandwiching an electrolyte coated separator between the anode and the cathode. In an addition embodiment, the present disclosure pertains to an electrode composed of a particle-decorated lignin. In some embodiments, the particle-decorated lignin includes particles that can include, without limitation, MnO2, NiWO4, MnO2, NiCoWO4, CoWO4, and combinations thereof. In a further embodiment, the present disclosure pertains to a supercapacitor made via the methods of the present disclosure.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: May 9, 2023
    Assignee: The Texas A&M University System
    Inventors: Hong Liang, Swarn Jha, Siddhi Gajanan Mehta
  • Publication number: 20230133795
    Abstract: Provided herein are medical devices, systems and platforms to monitor tissue properties such as oxygen saturation, temperature and degree of tissue edema for diagnosis and post-operative patient monitoring. The medical devices may be handheld or portable or may be removable patches. The medical devices utilize light of various visible and near-infrared wavelengths to interrogate a tissue where the intensities of reflected light correlate to one or more tissue property. Also provided are methods for measuring tissue properties, for detecting pressure ulcers and for remotely monitoring in real time a surgical flap on a post-operative subject via the medical devices.
    Type: Application
    Filed: November 4, 2022
    Publication date: May 4, 2023
    Applicant: Texas A&M University
    Inventors: John Hanks, Amir Tofighi Zavareh, Michel Saint-Cyr
  • Publication number: 20230139680
    Abstract: Embodiments of the present disclosure pertain to methods of selecting cyclic peptides that bind to a target by transforming a phage display library with a plurality of nucleic acids into bacterial host cells, where the nucleic acids include phage coat protein genes with a combinatorial region that encodes at least one cysteine and at least one non-canonical amino acid. The transformation results in the production of phage particles with phage coat proteins where the cysteine and the non-canonical amino acid couple to one another to form a cyclic peptide library. Phage particles are then screened against the desired target to select bound cyclic peptides. Amino acid sequences of the selected cyclic peptides are then identified. Additional embodiments pertain to methods of constructing a phage display library that encodes the cyclic peptides. Further embodiments of the present disclosure pertain to the produced cyclic peptides, phage display libraries and phage particles.
    Type: Application
    Filed: May 20, 2019
    Publication date: May 4, 2023
    Applicant: The Texas A&M University System
    Inventor: Wenshe Liu
  • Patent number: 11637426
    Abstract: A device includes an input converter, an output converter, and a controller. The input converter is electrically coupled to an electrical meter and an energy production array. The output converter is electrically coupled to the energy production array and a load. The controller is communicatively coupled to the input converter, the output converter, the energy production array, and the load. The input converter and the output converter are positioned between the electrical meter and the load.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: April 25, 2023
    Assignee: The Texas A&M University System
    Inventors: Panganamala R. Kumar, Le Xie, Prasad N. Enjeti