Patents Assigned to The Board of Trustees Operating Michigan State University
  • Patent number: 8659498
    Abstract: A patch antenna system comprises a patch antenna having a patch spatially separated from a ground plane; a plurality of pins interposed between the patch and the ground plane selectively connecting the patch to the ground plane; and a control module operably coupled to the plurality of pins and operable to set an operating frequency characteristic of the patch antenna by selectively connecting the patch to the ground plane with one or more of the plurality of pins.
    Type: Grant
    Filed: April 15, 2010
    Date of Patent: February 25, 2014
    Assignee: Board of Trustees Operating Michigan State University
    Inventors: Edward J. Rothwell, Lynn Greetis
  • Patent number: 8481843
    Abstract: A thermoelectric composition comprises a material represented by the general formula (AgaX1?a)1±x(SnbPb1?b)mM?1?yQ2+m wherein X is Na, K, or a combination of Na and K in any proportion; M? is a trivalent element selected from the group consisting of Sb, Bi, lanthanide elements, and combinations thereof; Q is a chalcogenide element selected from the group consisting of S, Te, Se, and combinations thereof; a and b are independently >0 and ?1; x and y are independently >0 and <1; and 2?m?30. The compositions exhibit a figure of merit ZT of up to about 1.4 or higher, and are useful as p-type semiconductors in thermoelectric devices.
    Type: Grant
    Filed: August 31, 2004
    Date of Patent: July 9, 2013
    Assignee: Board of Trustees Operating Michigan State University
    Inventors: Mercouri G. Kanatzidis, Kuei-Fang Hsu
  • Patent number: 8372621
    Abstract: Novel enzymes and novel enzymatic pathways for the pyruvate-based synthesis of shikimate or at least one intermediate thereto or derivative thereof, nucleic acids encoding the enzymes, cells transformed therewith, and kits containing said enzymes, cells, or nucleic acid. A KDPGal aldolase is used to perform condensation of pyruvate with D-erythrose 4-phosphate to form 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP); a 3-dehydroquinate synthase is used to convert the DAHP to 3-dehydroquinate (DHQ); DHQ dehydratase can then convert DHQ to the key shikimate intermediate, 3-dehydroshikimate.
    Type: Grant
    Filed: July 20, 2010
    Date of Patent: February 12, 2013
    Assignee: Board of Trustees Operating Michigan State University
    Inventor: John W. Frost
  • Patent number: 8273031
    Abstract: Method and apparatus are introduced for determining proportional cardiac output (CO), absolute left atrial pressure (LAP), and/or other important hemodynamic variables from a contour of a circulatory pressure waveform or related signal. Certain embodiments of the invention provided herein include the mathematical analysis of a pulmonary artery pressure (PAP) waveform or a right ventricular pressure (RVP) waveform in order to determine beat-to-beat or time-averaged proportional CO, proportional pulmonary vascular resistance (PVR), and/or LAP. The invention permits continuous and automatic monitoring of critical hemodynamic variables with a level of invasiveness suitable for routine clinical application. The invention may be utilized, for example, to continuously monitor critically ill patients with pulmonary artery catheters installed and chronically monitor heart failure patients instrumented with implanted devices for measuring RVP.
    Type: Grant
    Filed: December 23, 2009
    Date of Patent: September 25, 2012
    Assignees: Board of Trustees Operating Michigan State University, Massachusetts Institute Of Technology
    Inventors: Richard Cohen, Ramakrishna Mukkamala
  • Patent number: 8265110
    Abstract: A laser and monitoring system is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan (hereinafter “MIIPS”) method is used to characterize the spectral phase of femtosecond laser pulses and to correct them. A further aspect of the system of the present invention is employed to monitor environmental chemicals and biological agents, including toxins, explosives, and diseases.
    Type: Grant
    Filed: June 22, 2009
    Date of Patent: September 11, 2012
    Assignee: Board of Trustees Operating Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy, Matthew Comstock
  • Patent number: 8185209
    Abstract: In a method for visualizing an object under conditions of low ambient light, the object to be visualized is exposed to incident electromagnetic radiation having a wavelength greater than what can normally be seen by the naked eye. Light reflected from the object is then perceived with an enhanced eye. The enhanced eye contains an up-conversion material optically coupled to the photoreceptors. Up-conversion materials absorb in the infrared and luminesce in the visible. Particles containing such materials are delivered to the eye where they are optically coupled to the retina or photoreceptor cells and nearby tissues. There they provide in-situ up-conversion of infrared frequencies (from about 700 to about 11,000 nm) to the otherwise unaided eye.
    Type: Grant
    Filed: December 17, 2003
    Date of Patent: May 22, 2012
    Assignee: Board of Trustees Operating Michigan State University
    Inventor: Marcos Dantus
  • Patent number: 8080397
    Abstract: A bioengineered synthesis scheme for the production of quinic acid from a carbon source is provided. Methods of producing quinic acid from a carbon source based on the synthesis scheme as well as conversion of quinic acid to hydroquinone are also provided.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: December 20, 2011
    Assignee: Board of Trustees Operating Michigan State University
    Inventors: John W. Frost, Karen M. Frost
  • Patent number: 7790431
    Abstract: Novel enzymes and novel enzymatic pathways for the pyruvate-based synthesis of shikimate or at least one intermediate thereto or derivative thereof, nucleic acids encoding the enzymes, cells transformed therewith, and kits containing said enzymes, cells, or nucleic acid. A KDPGal aldolase is used to perform condensation of pyruvate with D-erythrose 4-phosphate to form 3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP); a 3-dehydroquinate synthase is used to convert the DAHP to 3-dehydroquinate (DHQ); DHQ dehydratase can then convert DHQ to the key shikimate intermediate, 3-dehydroshikimate.
    Type: Grant
    Filed: September 24, 2004
    Date of Patent: September 7, 2010
    Assignee: Board of Trustees Operating Michigan State University
    Inventor: John W. Frost
  • Patent number: 7771547
    Abstract: Methods are disclosed for producing in-situ composite solders having a particulate intermetallic phase homogeneously distributed throughout the solder matrix. An eutectic solder is mixed with the components of the intermetallic phase, melted and rapidly cooled to form the desired solder. In-situ composite solder alloys formed by the disclosed method provide greater solder joint strength and fatigue resistance.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: August 10, 2010
    Assignee: Board of Trustees Operating Michigan State University
    Inventors: Thomas R. Bieler, Karatholuvu N. Subramanian, Sunglak Choi
  • Publication number: 20100194663
    Abstract: A patch antenna system comprises a patch antenna having a patch spatially separated from a ground plane; a plurality of pins interposed between the patch and the ground plane selectively connecting the patch to the ground plane; and a control module operably coupled to the plurality of pins and operable to set an operating frequency characteristic of the patch antenna by selectively connecting the patch to the ground plane with one or more of the plurality of pins.
    Type: Application
    Filed: April 15, 2010
    Publication date: August 5, 2010
    Applicant: Board of Trustees Operating Michigan State University
    Inventors: Edward J. ROTHWELL, Lynn GREETIS
  • Patent number: 7757565
    Abstract: A self-powered sensor is provided for strain-rate monitoring and other low power requirement applications. The self-powered sensor is comprised of: a piezoelectric transducer; a non-volatile memory comprised of at least one floating gate transistor; a current reference circuit adapted to receive a voltage signal from the piezoelectric transducer and operable to output a reference current into the non-volatile memory; an impact-monitoring circuit having a triggering circuit and a switch; the triggering circuit adapted to receive the voltage signal from the piezoelectric transducer and operable to control the switch based on the rate of change of the voltage signal.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: July 20, 2010
    Assignee: Board of Trustees Operating Michigan State University
    Inventor: Shantanu Chakrabartty
  • Patent number: 7696406
    Abstract: A system for expression of a heterologous polypeptide in a transgenic host cell is disclosed. The system is based upon a transgene comprising a eukaryotic promoter operably linked to a DNA sequence comprising, in the 5? to 3? direction, a DNA sequence complementary to a sequence encoding a heterologous polypeptide, a DNA sequence complementary to an internal ribosome entry site, and a DNA sequence corresponding to a 3? untranslated region of a positive strand single-stranded RNA virus. Following introduction of a stimulus, the host cell synthesizes an RNA molecule complementary to a recombinant RNA encoded by the transgene. The stimulus can be a positive strand single-stranded RNA virus or a nucleic acid thereof. Because the complement of the recombinant RNA comprises an internal ribosome entry site and a sequence encoding a heterologous polypeptide, the host cell can synthesize the heterologous polypeptide.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: April 13, 2010
    Assignee: Board of Trustees Operating Michigan State University
    Inventor: Richard F. Allison
  • Patent number: 7690621
    Abstract: A method for producing a plurality of thin film actuators is disclosed. The method includes depositing a film of a shape memory alloy material onto a polyimide film to form a shape memory alloy construction. The shape memory alloy construction is strained from 2 to 8%. Post processing is conducted on the shape memory alloy construction after the step of imparting a 2 to 8% strain. This post processing can be the deposition of additional layers of the slicing of the actuators. Various shape memory metal actuators are disclosed.
    Type: Grant
    Filed: April 15, 2004
    Date of Patent: April 6, 2010
    Assignee: Board of Trustees Operating Michigan State University
    Inventor: David S. Grummon
  • Patent number: 7666144
    Abstract: Method and apparatus are introduced for determining proportional cardiac output (CO), absolute left atrial pressure (LAP), and/or other important hemodynamic variables from a contour of a circulatory pressure waveform or related signal. Certain embodiments of the invention provided herein include the mathematical analysis of a pulmonary artery pressure (PAP) waveform or a right ventricular pressure (RVP) waveform in order to determine beat-to-beat or time-averaged proportional CO, proportional pulmonary vascular resistance (PVR), and/or LAP. The invention permits continuous and automatic monitoring of critical hemodynamic variables with a level of invasiveness suitable for routine clinical application. The invention may be utilized, for example, to continuously monitor critically ill patients with pulmonary artery catheters installed and chronically monitor heart failure patients instrumented with implanted devices for measuring RVP.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: February 23, 2010
    Assignees: Board of Trustees Operating Michigan State University, Massachusetts Institute of Technology
    Inventors: Richard J. Cohen, Ramakrishna Mukkamala
  • Patent number: 7642083
    Abstract: A bioengineered synthesis scheme for the production of quinic acid from a carbon source is provided. Methods of producing quinic acid from a carbon source based on the synthesis scheme as well as conversion of quinic acid to hydroquinone are also provided.
    Type: Grant
    Filed: July 19, 2005
    Date of Patent: January 5, 2010
    Assignee: Board of Trustees Operating Michigan State University
    Inventors: John W. Frost, Karen M. Frost
  • Patent number: 7609731
    Abstract: A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: October 27, 2009
    Assignee: Board of Trustees Operating Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy, Matthew Comstock
  • Publication number: 20090256071
    Abstract: A laser and monitoring system is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan (hereinafter “MIIPS”) method is used to characterize the spectral phase of femtosecond laser pulses and to correct them. A further aspect of the system of the present invention is employed to monitor environmental chemicals and biological agents, including toxins, explosives, and diseases.
    Type: Application
    Filed: June 22, 2009
    Publication date: October 15, 2009
    Applicant: Board of Trustees operating Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy, Matthew Comstock
  • Patent number: 7583710
    Abstract: A laser and monitoring system is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and binary pulse shaping (BPS). Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan (hereinafter “MIIPS”) method is used to characterize the spectral phase of femtosecond laser pulses and to correct them. A further aspect of the system of the present invention is employed to monitor environmental chemicals and biological agents, including toxins, explosives, and diseases.
    Type: Grant
    Filed: July 2, 2004
    Date of Patent: September 1, 2009
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Marcos Dantus, Vadim V Lozovoy, Matthew Comstock
  • Publication number: 20090163729
    Abstract: The present invention relates to compositions comprising acyltransferase nucleic acid molecules for altering lipids on the surface of plants, and related methods. In particular, the present invention provides compositions and methods for increasing the amount of free fatty acids, acylglycerols, and other lipids on the surface of a plant. In a preferred embodiment, the present invention relates to increasing activity of a GPAT acyltransferase for altering lipid on the plant surface, for increasing surface lipids, for enhancing environmental stress tolerance, increasing resistance to biotic stress, and providing novel plant lipids for commercial products. In further embodiments, the present invention relates to using an Arabidopsis thaliana GPAT acyltransferase for altering lipid compounds on the surface of a plant.
    Type: Application
    Filed: June 22, 2007
    Publication date: June 25, 2009
    Applicant: The Board of Trustees Operating Michigan State University
    Inventors: Yonghua Li, Fred Beisson, Mike Pollard, John Ohlrogge
  • Patent number: 7450618
    Abstract: A laser system using ultrashort laser pulses is provided. In another aspect of the present invention, the system includes a laser, pulse shaper and detection device. A further aspect of the present invention employs a femtosecond laser and a spectrometer. Still another aspect of the present invention uses a laser beam pulse, a pulse shaper and a SHG crystal. In yet another aspect of the present invention, a multiphoton intrapulse interference phase scan system and method characterize the spectral phase of femtosecond laser pulses. Fiber optic communication systems, photodynamic therapy and pulse characterization tests use the laser system with additional aspects of the present invention.
    Type: Grant
    Filed: October 4, 2002
    Date of Patent: November 11, 2008
    Assignee: Board of Trustees operating Michigan State University
    Inventors: Marcos Dantus, Vadim V. Lozovoy