Patents Assigned to The Charles Stark Draper Laboratory, Inc.
  • Patent number: 11327102
    Abstract: Aspects are generally directed to a compact and low-noise electric field detector, methods of operation, and methods of production thereof. In one example, an electric field detector includes a proof mass, a source of concentrated charge coupled to the proof mass, and a substrate having a substrate offset space defined therein, the proof mass being suspended above the substrate offset space. The electric field detector further includes a sense electrode disposed on the substrate within the substrate offset space and proximate the proof mass, the sense electrode being configured to measure a change in capacitance relative to the proof mass from movement of the proof mass in response to a received electric field at the source of concentrated charge. The electric field detector includes a control circuit coupled to the sense electrode and configured to determine a characteristic of the electric field based on the measured change in capacitance.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: May 10, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: James A. Bickford, Stephanie Lynne Golmon, Paul A. Ward, William D. Sawyer, Marc Steven Weinberg, John J. Le Blanc, Louis Kratchman, James S. Pringle, Jr., Daniel K. Freeman, Amy Duwel, Max Lindsay Turnquist, Ronald Steven McNabb, Jr., William A. Lenk
  • Patent number: 11324918
    Abstract: A multi-lumen catheter includes a primary lumen having a proximal end and a tip and a secondary lumen parallel to the primary lumen. The primary lumen and the secondary lumen share a wall. A port is defined in the wall proximate the tip of the primary lumen and provides fluidic communication between the primary lumen and the secondary lumen.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: May 10, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Joseph L. Charest, James Hsiao, Christopher DiBiasio, Kevin A. Hufford
  • Patent number: 11326143
    Abstract: A method for preparing and processing a sample is provided. The method includes obtaining a sample including biofluid. The method further includes purifying at least part of the sample via an acoustic separator to separate target cells from the sample. The sample may accordingly be at least partially purified. The method further includes causing a portion of an output collected from the acoustic separator to flow through a filter. At least one reagent, such as a lysis reagent or assay reagent, is caused to flow over the cells.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: May 10, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Parker Dow, Nicolas Mesyngier, Ken Kotz, Georgiana Kourepenos, Jason O. Fiering, Jason W. Holder
  • Patent number: 11324955
    Abstract: The systems and methods described herein include an external base station with a tethered transceiver, an implanted hub that includes power, telemetry, and processing electronics, and a plurality of implanted satellite that contain reconfigurable front-end electronics for interfacing with electrodes. The system can operate in different modes. In a first mode, called a base boost mode, the external base station is used for closed-loop control of stimulation therapies. In a second, autonomous mode, closed-loop control is performed in the hub without direct influence from the base station. In a third mode, streams of neural data are transmitted to an offline processor for offline analysis.
    Type: Grant
    Filed: June 4, 2019
    Date of Patent: May 10, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jesse J. Wheeler, Philip D. Parks, James E. Moran, Andrew Czarnecki, Keith B. Baldwin, David Goldberg, Alex Kindle, Marc W. McConley
  • Patent number: 11298267
    Abstract: The present disclosure discussed a handpiece for trans-canal delivery of a therapeutic substance to the inner ear. The handpiece can be inserted into the middle ear via a surgical tympanotomy approach. The handpiece can enable a controlled injection of a therapeutic substance directly through the round window membrane and into the inner ear. The direct delivery of the therapeutic substance to the inner ear can enable the delivery of a precise amount of therapeutic substance into the inner ear. Because the therapeutic substance is delivery directly to the inner ear the delivery of the therapeutic substance is not subject to limitations on molecule size and inconsistent diffusion rates that are present when therapeutic substances are diffused across the round window membrane.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: April 12, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Ernest S. Kim, Michael McKenna, Ruwan Kiringoda
  • Patent number: 11291756
    Abstract: A method for separating cells in a biofluid includes pretreating the biofluid by introducing an additive comprising a cell activator, flowing the pretreated biofluid through a microfluidic separation channel, and applying acoustic energy to the microfluidic separation channel to accumulate target cells in a primary stream and non-target cells in a secondary stream. A system for microfluidic cell separation capable of separating target cells from non-target cells in a biofluid includes at least one microfluidic separation channel, a source of biofluid, a source of additive comprising a cell activator, and at least one acoustic transducer coupled to the microfluidic separation channel.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: April 5, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Jason O. Fiering, Kenneth T. Kotz, Nathan Francis Moore
  • Patent number: 11287635
    Abstract: An optical system such as an imaging system, projecting system or combined imaging and projecting system, has complex dielectric coatings and/or reflecting polarizers to separate multiple spectral bands and/or polarizations on one or more of the system's curved mirrors.
    Type: Grant
    Filed: June 27, 2019
    Date of Patent: March 29, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Matthew A. Sinclair, Paul Aaron Bohn, Juha-Pekka Laine, Francis J. Rogomentich
  • Patent number: 11288406
    Abstract: An embodiment is directed to a hardware circuit for performing operations on data transmitted between a processor and memory. The hardware circuit includes a first interface communicatively coupled to the processor. The first interface configured to emulate a first protocol of the memory. The hardware circuit further includes a second interface communicatively coupled to the memory. The second interface configured to emulates a second protocol of the processor. The hardware circuit also includes hardware logic configured with a bi-directional path, such that each of the first and second interfaces is associated with a different direction of the bi-directional path. The bi-directional path is configured to execute an operation on data received at both the first interface and the second interface.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: March 29, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Nhut Tran, J. Ryan Prince, Brian Nugent, Elliot Greenwald
  • Patent number: 11278716
    Abstract: An electrode array includes a body portion, at least one tail portion, at least one tissue surface contact, and at least one intratissue contact. The electrode array can provide stimulation or record signals from both the surface of a target tissue and within the target tissue. A system for tissue surface and intratissue signal recording and/or stimulation contains an electrode array, a controller or receiver, and at least one connection between the electrode array and the controller or receiver. A method of recording signals and/or stimulating tissue includes contacting the target tissue surface and target tissue interior with an electrode array and providing or recording an electrical, chemical, or optical signal.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: March 22, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Jesse J. Wheeler, John R. Burns, IV, John Lachapelle, Caroline K. Bjune, Philip D. Parks, II
  • Patent number: 11278885
    Abstract: This disclosure describes techniques for fabricating a high-resolution, non-cytotoxic and transparent microfluidic device. A material can be selected based on having an optical property with a predetermined degree of transparency to provide viewability of a biological sample through the microfluidic device and a level of cytotoxicity within a predetermined threshold to provide viability of the biological sample within the microfluidic device. An additive manufacturing technique can be selected from a plurality of additive manufacturing techniques for fabricating the microfluidic device based on the selected material to provide a resolution of dimensions of one or more channels of the microfluidic device higher than a predetermined resolution threshold.
    Type: Grant
    Filed: August 29, 2018
    Date of Patent: March 22, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Ashley Lynne Beckwith, Jeffrey Borenstein, Nathan Moore, Daniel Doty, Luis Fernando Velásquez-Gracía
  • Patent number: 11280615
    Abstract: A wide field-of-view celestial sighting system and method are provided. The method includes orienting an imaging optic to collect light from at least one light source, such as at least one celestial body, the imaging optic being secured to a platform. The method further includes selectively collecting light from the at least one celestial body through a selective light collector secured to the platform and positioned in an imaging surface, such as an imaging plane, of the imaging optic. The method further includes combining forward scattered light from the at least one celestial body to provide a combined forward scattered light, and detecting a light intensity of the combined forward scattered light. Systems for performing the method are provided.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: March 22, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Juha-Pekka J. Laine, Stephen P. Smith
  • Patent number: 11278715
    Abstract: A lead assembly for networked implants may contain a controller, an implantable tissue contact system connected to the controller and including a plurality of leads, and a breakout connector connected to each of the plurality of leads, and further connected to a shared communication path. A physiological interface system may contain a controller and an implantable tissue contact system. Methods of treating a subject and monitoring a subject include transmitting signals between a controller and an implantable tissue contact system.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: March 22, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Jesse J. Wheeler, John Lachapelle, Caroline K. Bjune, Philip D. Parks, II, Carlos A. Segura
  • Patent number: 11269373
    Abstract: The present disclosure relates to systems and methods to maintain clock synchronization of multiple computers, or computer systems, through the exchange of communication messages that include clock and/or timing information.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: March 8, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Eric Karl Mautner, Brianna Klingensmith
  • Patent number: 11268072
    Abstract: The present disclosure provides compositions including recombinant K1E bacteriophages, methods for making the same, and uses thereof. The recombinant K1E bacteriophages disclosed herein are useful for the identification and/or antibiotic susceptibility profiling of specific bacterial strains/species present in a sample.
    Type: Grant
    Filed: July 12, 2019
    Date of Patent: March 8, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Sarah Gruszka, Jason Holder
  • Patent number: 11261465
    Abstract: A method and system of delivering a charged cargo, such as a biomolecule, to a target structure, such as cells, exosomes, other vesicles or micelles, using an electroactive porous membrane. This method comprises contacting an electroactive porous membrane with a fluid flow toward the membrane. The fluid contains charged biomolecules and the membrane and biomolecules are oppositely charged so that the biomolecules in the fluid are trapped on the membrane as the fluid flows through the pores of the membrane. Acceptor cells of interest are pinned to the membrane by the flow of the fluid, thereby aggregating the cells onto the membrane in close proximity to the trapped biomolecules. Finally, the acceptor cells are permeabilized.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: March 1, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Vishal Tandon, Daniel K. Freeman, Jonathan R. Coppeta, Jeffrey T. Borenstein, Jenna L. Balestrini
  • Patent number: 11249158
    Abstract: A method and a system for analysis of raw MRS data, in the form of signal strength versus chemical shift (ppm), from multiple scanners, includes “signal estimation” from each raw data set, followed by cross-scanner “data harmonization” of results. The final resulting MRS signals are consistent from one scanner to another, and are used for analysis by radiologists and other physicians.
    Type: Grant
    Filed: August 10, 2017
    Date of Patent: February 15, 2022
    Assignees: The Charles Stark Draper Laboratory, Inc., The Brigham and Women's Hospital, Inc.
    Inventors: John M. Irvine, Laura J. Mariano, Alexander P. Lin
  • Patent number: 11249184
    Abstract: In an embodiment, a method includes separating a heterogeneous radio-frequency (RF) signal, received at multiple antennas, into multiple homogenous signals. The multiple antennas have a known positional arrangement. The method further includes estimating a location relative to the known positional arrangement of the antennas of an object producing the RF signal based on phase and amplitude of each homogeneous signal as received at each of the plurality of antennas. The location can further be estimated over multiple time steps, such that velocity and acceleration can be accelerated from the estimated locations.
    Type: Grant
    Filed: May 7, 2019
    Date of Patent: February 15, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Robert Tingley, Christopher Bessette, Troy B. Jones
  • Patent number: 11243561
    Abstract: The present disclosure relates to systems and methods to maintain clock synchronization of multiple computers, or computer systems, through the exchange of communication messages that include clock and/or timing information.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: February 8, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Eric Karl Mautner, Brianna Klingensmith
  • Patent number: 11243450
    Abstract: A light field generator system including a leaky-mode SAW modulator is disclosed. The modulator incorporates at least one optical power component, such as a concave mirror or volume grating having a non-zero diopter rating. In some embodiments, the system incorporates the at least one optical power component by embedding the optical power component within a substrate of the SAW modulator and/or by placing the optical power component upon a surface of the SAW modulator.
    Type: Grant
    Filed: October 3, 2018
    Date of Patent: February 8, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Gregg E. Favalora, Michael G. Moebius, Steven J. Byrnes
  • Patent number: 11237335
    Abstract: MEMS-actuated optical switches can be implemented on photonic chips. These switches are compact, essentially planar, simple to implement and include only one moving MEMS component per switch. The switches exhibit low optical loss, require low power to operate, and are simple to control and easy to integrate with other optical devices. Each switch has two optical waveguides that are optically coupled in an ON switch state and not coupled in an OFF switch state. An end or a medial section of one of the two waveguides may translate between the ON and OFF states to affect the coupling. Alternatively, a coupling frustrator may translate between the ON and OFF states to affect the coupling.
    Type: Grant
    Filed: September 27, 2019
    Date of Patent: February 1, 2022
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Michael G. Moebius, Steven J. Spector, Eugene H. Cook, Jonathan J. Bernstein