Abstract: The present disclosure provides a rapid shutdown device for a photovoltaic system, which is connected between a photovoltaic power generation module and a photovoltaic inverter and comprises an input port and an output port. The rapid shutdown device further comprises: a first switch and a second switch; a third switch and a fourth switch; a controller coupled to control terminals of the first switch, the third switch, and the fourth switch, and configured to control on and off of the first switch, the third switch, and the fourth switch, so that the rapid shutdown device operates in a normal state, a bypass state or a shutdown state.
Type:
Grant
Filed:
March 2, 2021
Date of Patent:
December 20, 2022
Assignee:
Delta Electronics (Shanghai) CO., LTD
Inventors:
Xuancai Zhu, Bingwen Weng, Yuxi Wang, Bin Wang, Chengjun He
Abstract: A method for transmitting terminal capability information in a communication system supporting a plurality of carriers is provided. The method includes transmitting a control message including terminal capability information, wherein the terminal capability information includes at least one of an information element (IE) indicating whether to support a multi-bearer, an IE indicating whether to support a secondary cell group (SCG) bearer, or an IE indicating whether to support dual connectivity (DC).
Type:
Grant
Filed:
November 6, 2019
Date of Patent:
December 20, 2022
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Soeng-Hun Kim, Gert Jan Van Lieshout, Sang-Bum Kim
Abstract: A display apparatus comprises a display assembly and a main control chip. The display assembly comprises K timing controllers, K data driving circuits and a display panel. Each timing controller is configured to receive a set of pixel data among K sets of pixel data into which an i-th row of pixel data in a frame of image data are divided. A data driving circuit in the K data driving circuits is configured to receive the set of pixel data from a corresponding timing controller and output a set of data voltages. The display panel is configured to receive K sets of data voltages for display. The main control chip comprises a processor configured to receive the frame of image data, divide the i-th row of pixel data into the K sets of pixel data, and simultaneously transmit the K sets of pixel data to the K timing controllers.
Abstract: The present disclosure discloses a display panel and a display apparatus. The display panel includes a base substrate; a plurality of light emitting devices and a plurality of light sensors, disposed on the base substrate; thin film transistor structures disposed between the base substrate and the light emitting devices; a pixel definition layer configured to define positions of the light emitting devices; a first planarization layer disposed on a side, facing the base substrate, of the pixel definition layer; a light shading layer; and reflection parts each corresponding to a respective one of the light sensors; wherein: the light emitting devices are electrically connected with the thin film transistor structures; the reflection parts are disposed on sides, facing the base substrate, of the light sensors, and a side, facing the respective one reflection part, of the each light sensor is a light inlet side of the each light sensor.
Abstract: Provided is a display device, including a display screen, a transparent cover plate and a first light-shielding structure, wherein the display screen includes a display panel, a transparent bonding layer, a touch structure and a second light-shielding structure, and the display screen is provided with a through hole penetrating through the display panel, the transparent bonding layer and the touch structure. The first light-shielding structure is disposed on the transparent cover plate and surrounds the through hole, the second light-shielding structure is disposed on the touch structure and surrounds the through hole, and orthographic projections of both the first and second light-shielding structures onto the display panel are within the non-display region.
Abstract: The present invention discloses an LCP film production apparatus and method. The apparatus includes: a rack; a screw extrusion device; a T-shaped material port; a squeezing assembly, where the squeezing assembly includes a first roller wheel, a second roller wheel, and a third roller wheel, the first roller wheel and the second roller wheel are fixedly mounted directly below the T-shaped material port side by side, and the third roller wheel is fixedly mounted next to the second roller wheel side by side; and an electromagnetic field generator, fixedly connected to the T-shaped material port and mounted around the T-shaped material port in a circle by means of bolts, where the screw extrusion device is fixedly mounted at the top of the rack, and the T-shaped material port is fixedly mounted on one end of the screw extrusion device.
Abstract: A laminated transformer-type transmitter-receiver device for transmitting or delivering electrical signals and/or power. The laminated device can include two metal shielding layers disposed between transmit and receive windings, which, in turn, are disposed between two magnetic layers. The laminated device further includes a dielectric isolation layer disposed between the two metal shielding layers. In the laminated device, no (or very little) common mode capacitance is distributed within the dielectric isolation layer, and no (or very little) common mode or “leakage” current flows across the dielectric isolation layer. As a result, various adverse effects of the common mode capacitance and the leakage current during operation of the laminated device are avoided.
Abstract: A ceramic electronic device includes: a multilayer chip having a multilayer structure and a cover layer, the multilayer structure having a structure in which each of dielectric layers and each of internal electrode layers are alternately stacked, respective one ends of the plurality of internal electrode layers being alternately exposed to a first end face and a second end face of the multilayer structure, the cover layer being provided on each of an upper face and a lower face of the multilayer structure in a stacking direction of the multilayer structure, a main component of the cover layer being ceramic, wherein in each of two side faces of the multiplayer structure, a color of a first region is different from a color of a second region that is positioned at a height different from the first region in the stacking direction.
Abstract: The present disclosure is directed to gate-all-around (GAA) transistor structures with a low level of leakage current and low power consumption. For example, the GAA transistor includes a semiconductor layer with a first source/drain (S/D) epitaxial structure and a second S/D epitaxial structure disposed thereon, where the first and second S/D epitaxial structures are spaced apart by semiconductor nano-sheet layers. The semiconductor structure further includes isolation structures interposed between the semiconductor layer and each of the first and second S/D epitaxial structures. The GAA transistor further includes a gate stack surrounding the semiconductor nano-sheet layers.
Abstract: A source driver includes a latch unit sequentially retrieving a video data signal for each data row corresponding to each of a first to n th horizontal scanning lines of the display panel, an overdrive arithmetic circuit calculating an overdrive value of the drive voltage applied to the pixel portions on an N th line based on a comparison result of comparing the data row corresponding to the N th line among the first to n th horizontal scanning lines and the data row corresponding to an (N?1) th line and a distance to the N th line from the source driver, and a voltage output unit generating the drive voltage applied to the pixel portions on the N th line based on the data row corresponding to the N th line and the overdrive value to output to the source line.
Abstract: A dividing screen structure has at least two screens and at least one assembling member mounted on one side of one of the two screens for connecting the two screens together. Each screen has a frame with at least one magnet on each side for pairing with the assembling member; the assembling member comprises at least two magnetically attracted U-shaped securing members, and each securing member has a back portion, two side portions and an opening.
Abstract: A display device includes (i) a substrate having a first area, a second area, and a bending area located between the first area and the second area, where the substrate is bent along a bending axis in the bending area, the substrate includes a thin portion at an edge portion of the bending area, and the thin portion extends from the second area to the first area and has a thickness less than a thickness of the substrate at a center of the bending area; and (ii) an inorganic insulating layer over the substrate, where the inorganic insulating layer exposes the thin portion in the bending area.
Type:
Grant
Filed:
May 21, 2020
Date of Patent:
December 20, 2022
Assignee:
SAMSUNG DISPLAY CO., LTD.
Inventors:
Kyongjun Kim, Sungsik Yun, Juyeon Seo, Jinsuk Park, Jaebok Lee, Sungho Cho
Abstract: A method for communicating a data packet, the method includes receiving a data packet that supports a packet wash operation. The method determines whether the data packet can be forwarded along a network path towards a destination node without any modification. If the data packet cannot be forwarded along the network path towards the destination node without modification, the method determines whether conditions are met for performing the packet wash operation on the data packet. If the conditions are met, the packet wash operation is performed to generate a washed data packet. The packet wash operation generates the washed data packet by modifying a size of a payload of the data packet based on a packet wash specification that associates attributes to a plurality of data payload portions of the payload of the data packet. The washed data packet is forwarded along the network path towards the destination node.
Abstract: A light emitting diode (LED) stack for a display including a first LED sub-unit configured to emit a first colored light, a second LED sub-unit disposed on the first LED sub-unit and configured to emit a second colored light, and a third LED sub-unit disposed on at least one of the first LED sub-unit and the second LED sub-unit and configured to emit a third colored light, in which the first LED sub-unit is configured to emit light through the second LED sub-unit and the third LED sub-unit, and the second LED sub-unit is configured to emit light through the third LED sub-unit.
Type:
Grant
Filed:
June 29, 2020
Date of Patent:
December 20, 2022
Assignee:
Seoul Viosys Co., Ltd.
Inventors:
Jong Hyeon Chae, Chung Hoon Lee, Seong Gyu Jang, Chang Yeon Kim, Ho Joon Lee
Abstract: A method for computing a dominant class of a scene includes: receiving an input image of a scene; generating a segmentation map of the input image, the segmentation map being labeled with a plurality of corresponding classes of a plurality of classes; computing a plurality of area ratios based on the segmentation map, each of the area ratios corresponding to a different class of the plurality of classes of the segmentation map; and outputting a detected dominant class of the scene based on a plurality of ranked labels based on the area ratios.
Type:
Grant
Filed:
February 17, 2021
Date of Patent:
December 20, 2022
Assignee:
Samsung Electronics Co., Ltd.
Inventors:
Qingfeng Liu, Mostafa El-Khamy, Rama Mythili Vadali, Tae-ui Kim, Andrea Kang, Dongwoon Bai, Jungwon Lee, Maiyuran Wijay, Jaewon Yoo
Abstract: The purpose of the present invention is to provide a transfer sheet capable of providing hard coat properties and excellent weather resistance to a resin molded article such as organic glass. The transfer sheet has, in order, a base material film for mold release, a hard coat layer, a primer layer, and an adhesive layer. The weather resistance and adhesiveness of the hard coat layer and the primer layer are improved and hard coat properties and excellent weather resistance can be provided to a resin molded article being the transfer object, as a result of: the hard coat layer being formed from a cured product of a resin composition including a curable resin; and the primer layer being formed from a binder resin including a polyurethane having a mass-average molecular weight of 40,000-100,000 and including 1-30% by mass of an acrylic component.
Abstract: The present disclosure provides a display panel and a display device. The display panel includes: a first substrate; a second substrate in a superposed arrangement with the first substrate; and an auxiliary retaining wall located between the first and second substrates in an edge area of a facing portion of the first and second substrates. The auxiliary retaining wall includes a first retaining wall having a first sub-portion and a second sub-portion disposed opposite to each other, the second substrate comprises a bonding area outside of and adjoined by the facing portion, and the first and second sub-portions are located in areas corresponding to two opposite edges adjacent to an edge where the bonding area is located, respectively.