Patents Assigned to The Government of the United States of America as represented by the Secretary of the Navy
  • Patent number: 11075049
    Abstract: A thermionic dispenser cathode having a refractory metal matrix with scandium and barium compounds in contact with the metal matrix and methods for forming the same. The invention utilizes atomic layer deposition (ALD) to form a nanoscale, uniform, conformal distribution of a scandium compound on tungsten surfaces and further utilizes in situ high pressure consolidation/impregnation to enhance impregnation of a BaO—CaO—Al2O3 based emissive mixture into the scandate-coated tungsten matrix or to sinter a tungsten/scandate/barium composite structure. The result is a tungsten-scandate thermionic cathode having improved emission.
    Type: Grant
    Filed: October 15, 2019
    Date of Patent: July 27, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Boris N. Feigelson, James A. Wollmershauser, Kedar Manandhar
  • Patent number: 11074950
    Abstract: A metamagnetic tunneling-based spin valve device for multistate magnetic memory comprising an electronic memory logic element with four stable resistance states. A metamagnetic tunneling-based spin valve device for multistate magnetic memory comprising a layer of a metamagnetic material, a layer of a nonmagnetic material on the layer of a metamagnetic material, and a layer of a ferromagnetic material on the layer of a nonmagnetic material. A method of making a metamagnetic tunneling-based spin valve device for multistate magnetic memory.
    Type: Grant
    Filed: April 13, 2019
    Date of Patent: July 27, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Olaf M. J. van 't Erve, Steven P. Bennett, Adam L. Friedman
  • Patent number: 11073421
    Abstract: Optical detectors and methods of forming them are provided. The detector includes: a controller, pump and probe laser generators that generate modulated pump laser and probe lasers, respectively, a microring cavity that receives the lasers, a microbridge, and a photodetector. The microring cavity includes covered and exposed portions. The microbridge is suspended above the exposed portion and interacts with an evanescent optical field. The wavelength and modulated power of the pump laser are controlled to generate the evanescent optical field that excites the microbridge to resonance. The microbridge absorbs optical radiation which changes the resonance frequency proportionately. The probe laser is modulated in proportion to a vibration amplitude of the microbridge to form a modulated probe laser which is provided to the photodetector.
    Type: Grant
    Filed: August 9, 2019
    Date of Patent: July 27, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marcel Pruessner, Doewon Park, Todd Stievater, Dmitry Kozak, William Rabinovich
  • Patent number: 11072848
    Abstract: A method for producing high-temperature sputtered stoichiometric TiN thin films. A substrate is placed in a sputtering chamber a Ti target to be sputtered and the substrate temperature is controlled to be between room temperature and about 800° C. The sputtering chamber is evacuated to a base pressure of 2×10?7 Torr or lower, The Ti target is presputtered under an Ar gas flow at a pressure of 2-15 mTorr in a radio frequency (RF) power of 50-200 W. The Ti is then sputtered onto the substrate in the presence of N2 and Ar gas flows under the same pressure and RF power, with the ratio of N2 to Ar favoring N to ensure that the film is nitrogen-saturated.
    Type: Grant
    Filed: January 22, 2019
    Date of Patent: July 27, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Xiao Liu, Battogtokh Jugdersuren, Brian T. Kearney
  • Patent number: 11069984
    Abstract: A radiating element for a phased array antenna includes a first dielectric layer, a first conductive layer disposed on a first side of the first dielectric layer, the first conductive layer including a first member comprising a first stem and a first impedance matching portion, wherein the first impedance matching portion comprises at least one projecting portion projecting from a first edge of the first impedance matching portion, and a second member spaced apart from the first member, the second member including a second impedance matching portion, wherein the second impedance matching portion comprises at least one other projecting portion projecting toward the first edge of the first impedance matching portion.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: July 20, 2021
    Assignees: The MITRE Corporation, The Government of the United States of America, as Represented by the Secretary of the Navy
    Inventors: Wajih Elsallal, Jamie Hood, Al Locker, Rick W. Kindt
  • Patent number: 11067508
    Abstract: The stiffness and topology of ultra-small circular DNAs and DNA/peptide hybrids are exploited to create a transducer of enzyme activity with low error rates. The modularity and flexibility of the concept are illustrated by demonstrating various transducers that respond to either specific restriction endonucleases or to specific proteases. In all cases the output is a DNA oligo signal that, as we show, can readily be converted directly to an optical readout, or can serve as input for further processing, for example, using DNA logic or amplification By exploiting the DNA hairpin (or stem-loop) structure and the phenomenon of strand displacement, an enzyme signal is converted into a DNA signal, in the manner of a transducer. This is valuable because a DNA signal can be readily amplified, combined, and processed as information.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: July 20, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Mario Ancona, Hieu Bui
  • Patent number: 11067573
    Abstract: A chip for localized surface plasmon resonance (LSPR) biosensing and imaging having a glass coverslip compatible for use in a standard microscope and at least one array of functionalized plasmonic nanostructures patterned onto the glass coverslip with electron beam nanolithography. The nanostructures can be regenerated allowing the chip to be used multiple times. Also disclosed is a method for determining the fractional occupancy values for surface-bound receptors as a function of time for LSPR biosensing from the spectroscopic response of the array and modeling the photon count in each spectrometer channel, allowing for a functional relationship to be determined between the acquired spectrum and the fractional occupancy of binding sites on the array. Additionally disclosed is a method for the spatiotemporal mapping of receptor-ligand binding kinetics in LSPR imaging using the chip and projecting a magnified image of the array to a CCD camera and monitoring the binding kinetics of the array.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: July 20, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc P. Raphael, Joseph A Christodoulides, Jeff M Byers
  • Patent number: 11060511
    Abstract: Artificial muscles comprising a body of dielectric elastomer, wherein the body contains a pair of microfluidic networks are presented. Each microfluidic network includes a plurality of channels fluidically coupled via a manifold. The channels of the microfluidic networks are interdigitated and filled with conductive fluid such that each set of adjacent channels functions as the electrodes of an electroactive polymer (EAP) actuator. By using the manifolds as compliant wiring to energize the electrodes, artificial muscles in accordance with the present disclosure mitigate some or all of the reliability problems associated with prior-art artificial muscles.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: July 13, 2021
    Assignees: California Institute of Technology, The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Emil P. Kartalov, Axel Scherer
  • Patent number: 11062523
    Abstract: The invention relates to creating actual object data for mixed reality applications. In some embodiments, the invention includes using a mixed reality controller to (1) define a coordinate system frame of reference for a target object, the coordinate system frame of reference including an initial point of the target object and at least one directional axis that are specified by a user of the mixed reality controller, (2) define additional points of the target object, and (3) define interface elements of the target object. A 3D model of the target object is generated based on the coordinate system frame of reference, the additional points, and the interface elements. After receiving input metadata for defining interface characteristics for the interface elements displayed on the 3D model, the input metadata is sued to generate a workflow for operating the target object in a mixed reality environment.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: July 13, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Larry Clay Greunke, Mark Bilinski, Christopher James Angelopoulos, Michael Joseph Guerrero
  • Publication number: 20210206904
    Abstract: Disclosed is a composition having: an organosilane polymer, a polyamide polymer; and an abrasive aggregate. The organosilane is made by: reacting an amino-functional alkoxysilane with one or more polyisocyanates to form one or more adducts having an unreacted isocyanate group; and reacting the adducts with one or more polyfunctional amino- and/or hydroxyl compounds so that the polymer contains no unreacted isocyanate groups. The polyfunctional amino- and/or hydroxyl compound has a cycloaliphatic group or an aromatic group. The composition can be used to make a single-component polysiloxane non-skid/non-slip coating that is applied by rolling, spraying, or troweling and cures with atmospheric moisture.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Erick B. Iezzi
  • Publication number: 20210208501
    Abstract: A method of graphene-enabled block copolymer lithography transfer to an arbitrary substrate comprising the steps of applying graphene on a surface, adding block copolymers to the graphene on the surface, phase-separating the block copolymers, forming nanopatterned phase separated block copolymers, delaminating the graphene, and transferring the graphene and nanopatterned phase separated block copolymers to a second surface. A layer of nanopatterned phase separated block copolymers on an arbitrary surface comprising a first arbitrary substrate absent of chemical preparation, a layer of graphene on the first arbitrary substrate, and a layer of phase-separated block copolymers on the layer of graphene, wherein the layer of phase-separated block copolymers on the layer of graphene was formed on a second substrate and delaminated via water liftoff and wherein the nanopatterned phase separated block copolymers are utilized as a shadow mask for lithography on the first arbitrary substrate.
    Type: Application
    Filed: December 8, 2020
    Publication date: July 8, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Keith E. Whitener, Woo K. Lee
  • Patent number: 11056090
    Abstract: A device for use in a medium comprising a medium vibro-acoustic impedance. The device includes an elastic material including a plurality of unit cells. The plurality of unit cells includes a first unit cell. The first unit cell includes a first unit-cell joint comprising a first unit-cell joint wall defining a first joint central void, a first unit-cell joint inclusion located in the first joint central void, and at least two first unit-cell arms connected to and extending away from the first unit-cell joint. The elastic material includes an elastic-material vibro-acoustic impedance. The elastic-material vibro-acoustic impedance and the medium vibro-acoustic impedance are sufficiently vibro-acoustically impedance-matched to couple time-varying, propagating vibro-acoustic fields between said elastic material and the medium.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: July 6, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Theodore P. Martin, Charles Alan Rohde, Gregory Orris, Kristin Charipar, Alberto Piqué
  • Patent number: 11046579
    Abstract: Disclosed herein is a method of providing a structure having two electrodes connected by nanowires, exposing the structure to an analyte that can adsorb onto the nanowires, and passing an electrical current through the nanowires to heat the nanowires to desorb the analyte. Also disclosed herein is an apparatus having the above structure; a current source electrically connected to the electrodes, and a detector to detect the analyte.
    Type: Grant
    Filed: December 9, 2019
    Date of Patent: June 29, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Braden C. Giordano, Pehr E. Pehrsson, Kevin J. Johnson, Daniel Ratchford, Christopher Field, Junghoon Yeom
  • Patent number: 11047873
    Abstract: Systems and methods are provided for making in-situ measurements of the sea bed 3 component fluid velocity field and sediment motion across a range of real ocean conditions using particle image velocimetry (PIV). A PIV system in accordance with an embodiment of the present disclosure can include a camera to capture images of the particles in motion, a laser to generate a laser sheet for illuminating the particles, and a synchronizer to act as an external trigger for the laser and the camera.
    Type: Grant
    Filed: May 31, 2019
    Date of Patent: June 29, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph Calantoni, Edward Braithwaite, Callum Gray, Sean Griffin
  • Publication number: 20210187447
    Abstract: An article having a nanoporous membrane and a nanoporous graphene sheet layered on the nanoporous membrane. A method of: depositing a layer of a diblock copolymer onto a graphene sheet, and etching a minor phase of the diblock copolymer and a portion of the graphene in contact with the minor phase to form a nanoporous article having a nanoporous graphene sheet and a nanoporous layer of a polymer. A method of: depositing a hexaiodo-substituted macrocycle onto a substrate having a Ag(111) surface; coupling the macrocycle to form a nanoporous graphene sheet; layering the graphene sheet and substrate onto a nanoporous membrane with the graphene sheet in contact with the nanoporous membrane; and etching away the substrate.
    Type: Application
    Filed: March 4, 2021
    Publication date: June 24, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Manoj K. Kolel-Veetil, Paul E. Sheehan
  • Publication number: 20210188716
    Abstract: Disclosed is a composition having nanoparticles or particles of a refractory metal, a refractory metal hydride, a refractory metal carbide, a refractory metal nitride, or a refractory metal boride, an organic compound consisting of carbon and hydrogen, and a nitrogenous compound consisting of carbon, nitrogen, and hydrogen. The composition, optionally containing the nitrogenous compound, is milled, cured to form a thermoset, compacted into a geometric shape, and heated in a nitrogen atmosphere at a temperature that forms a nanoparticle composition comprising nanoparticles of metal nitride and optionally metal carbide. The nanoparticles have a uniform distribution of the nitride or carbide.
    Type: Application
    Filed: March 3, 2021
    Publication date: June 24, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Matthew Laskoski, Boris Dyatkin, Teddy M. Keller
  • Patent number: 11044549
    Abstract: Supercoupling power dividers are provided, in which acoustic impedance at an acoustic input port matches the combined acoustic impedance at two or more acoustic output ports, and the phase of the input signal matches the combined phases of the two or more acoustic output ports. Methods for achieving impedance matching using a uniform-phase acoustic power divider are also provided. The devices and methods achieve acoustic supercoupling without requiring embedded membranes or resonators.
    Type: Grant
    Filed: December 3, 2019
    Date of Patent: June 22, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Matthew S. Byrne, Hussein Esfahlani, Andrea Alu
  • Patent number: 11043785
    Abstract: Methods for synthesizing fibers having nanoparticles therein are provided, as well as preforms and fibers incorporating nanoparticles. The nanoparticles may include one or more rare earth ions selected based on fluorescence at eye-safer wavelengths, surrounded by a low-phonon energy host. Nanoparticles that are not doped with rare earth ions may also be included as a co-dopant to help increase solubility of nanoparticles doped with rare earth ions in the silica matrix. The nanoparticles may be incorporated into a preform, which is then drawn to form fiber. The fibers may beneficially be incorporated into lasers and amplifiers that operate at eye safer wavelengths. Lasers and amplifiers incorporating the fibers may also beneficially exhibit reduced Stimulated Brillouin Scattering.
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: June 22, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Colin C. Baker, Edward J. Friebele, Woohong Kim, L. Brandon Shaw, Jasbinder S. Sanghera
  • Publication number: 20210181542
    Abstract: A tunable spectral filter comprising a phase change material is incorporated into a multilayered dielectric structure. The dielectric permittivity, and thus the filter properties, of the structure can be modified by producing a change in the phase change material, e.g., causing a metal-insulator transition. By controllably causing such a change in the dielectric permittivity of the phase change material, the spectral transmittance and reflectance of the structure, and thus its filter properties, can be modified to provide a predetermined transmittance or reflectance of electromagnetic radiation incident on the structure. In preferred embodiments, the phase change material layer is a vanadium dioxide (VO2) film formed by atomic layer deposition (ALD).
    Type: Application
    Filed: December 13, 2019
    Publication date: June 17, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc Currie, Virginia D. Wheeler, Guy Beadie
  • Patent number: 11035984
    Abstract: The invention relates to methods for fabricating antireflective surface structures (ARSS) on an optical element using a three-dimensional film layer applied to the surface of the optical element. The methods beneficially permit materials that do not exhibit local variation in physical and chemical properties to be provided with ARSS. Optical elements having ARSS on at least one surface are also provided.
    Type: Grant
    Filed: December 7, 2017
    Date of Patent: June 15, 2021
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Lynda E. Busse, L. Brandon Shaw, Jasbinder S. Sanghera, Ishwar D. Aggarwal, Menelaos K. Poutous