Patents Assigned to The Government of the United States of America as represented by the Secretary of the Navy
  • Publication number: 20230054994
    Abstract: This disclosure concerns electrically conducting poly(pyrazoles). The concept of oligomerizing and polymerizing substituted aminopyrazole derivatives combined with a monomer activation procedure involving base-mediated conversion of the protonated pyrazole ring nitrogen to amine salt was developed. This disclosure concerns the specific chemistries needed for the synthesis of a pyrazole monomer used in the polymer synthesis. The procedure used for blending the novel polypyrazoles with other compounds needed for construction of solar cells for testing was developed. This disclosure concerns the concept of using these types of heteroatom-rich, electron-deficient oligomers or polymers as n-dopable or p-dopable electron acceptors in photovoltaic cells. This disclosure concerns synthesizing the starting monomer compounds and polypyrazoles.
    Type: Application
    Filed: October 25, 2022
    Publication date: February 23, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Ian D. Giles, Jawad Naciri, Paul T. Charles, Scott A. Trammell, Jeffrey R. Deschamps, Jeffrey C. Depriest
  • Patent number: 11584826
    Abstract: An interpenetrating network (IPN) polymer membrane material includes a soft polyurethane interspersed with a crosslinked conducting polymer. The material can be reversibly “switched” between its oxidized and reduced states by the application of a small voltage, ˜1 to 4 volts, thus modulating its diffusivity.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: February 21, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brett D. Martin, Jawad Naciri, Banahalli R. Ratna
  • Patent number: 11586795
    Abstract: Systems and methods are provided for a turnkey modular printed circuit board enclosure that is generated using a template generator. The template generator accepts a user input comprising an enclosure parameter, based on which a manufacturing file may be generated. The manufacturing file may be provided to a fabricator for fabricating the enclosure or the manufacturing file may be modified in a printed circuit board design environment to incorporate a printed circuit board into the enclosure. The printed circuit board may be a separate printed circuit board that is inserted into the enclosure or it may be embedded in a face of the enclosure.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: February 21, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Blerta Bajramaj Markowski, Brian Carl Hicks, David Bonanno, Freddie Santiago
  • Publication number: 20230048788
    Abstract: A method of forecasting an ocean state via a multi-scale two-step assimilation of Surface Water Ocean Topography (SWOT) observations. The method may include receiving data associated with a prior ocean state forecast associated with SWOT observations, determining a large-scale increment state variable based on a large scale correction associated with the prior ocean state forecast, and determining a small scale initial input value based on (i) a combination of the background state associated with the prior ocean state forecast and (ii) the determined large-scale increment state variable. The method may include generating, based on the determined small scale initial input value, a small scale correction associated with the prior ocean state forecast, determining a small-scale increment state variable based on the small scale correction, and generating a current ocean state forecast based on at least some of this information.
    Type: Application
    Filed: August 5, 2022
    Publication date: February 16, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph D'Addezio, Innocent Souopgui, Gregg Jacobs, Matthew Carrier, Hans Ngodock
  • Patent number: 11579287
    Abstract: Systems and methods are provided for adapting automotive mmW radar technology to meet the requirements of autonomous unmanned aerial vehicle (UAV) systems. Embodiments of the present disclosure provide solutions for several design challenges from this adaptation, such as utilizing a limited number of antenna channels to scan in both azimuth and elevation.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: February 14, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Brian Tierney, Christopher T. Rodenbeck
  • Patent number: 11572281
    Abstract: A method for graphene functionalization that preserves electronic properties and enables nanoparticles deposition comprising providing graphene, functionalizing the graphene via non-covalent or covalent functionalization, rinsing the graphene, drying the graphene, and forming functionalized graphene wherein the functionalized graphene preserves electronic properties and enables nanoparticles deposition. A functionalized graphene wherein the graphene functionalization preserves electronic properties and enables nanoparticles deposition.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: February 7, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Evgeniya H. Lock, Michael S. Osofsky, Raymond C Y Auyeung, Rachael L. Myers-Ward, David Kurt Gaskill, Joseph Prestigiacomo
  • Patent number: 11573178
    Abstract: Building blocks are provided for on-chip chemical sensors and other highly-compact photonic integrated circuits combining interband or quantum cascade lasers and detectors with passive waveguides and other components integrated on a III-V or silicon. A MWIR or LWIR laser source is evanescently coupled into a passive extended or resonant-cavity waveguide that provides evanescent coupling to a sample gas (or liquid) for spectroscopic chemical sensing. In the case of an ICL, the uppermost layer of this passive waveguide has a relatively high index of refraction that enables it to form the core of the waveguide, while the ambient air, consisting of the sample gas, functions as the top cladding layer. A fraction of the propagating light beam is absorbed by the sample gas if it contains a chemical species having a fingerprint absorption feature within the spectral linewidth of the laser emission.
    Type: Grant
    Filed: August 20, 2021
    Date of Patent: February 7, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jerry R. Meyer, Igor Vurgaftman, Chadwick Lawrence Canedy, William W. Bewley, Chul Soo Kim, Charles D. Merritt, Michael V. Warren, R. Joseph Weiblen, Mijin Kim
  • Patent number: 11573577
    Abstract: A method and system for generating an optimal trajectory path tasking for an unmanned aerial vehicle (UAV) for collection of data on one or more collection targets by a sensor on the UAV.
    Type: Grant
    Filed: January 30, 2020
    Date of Patent: February 7, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Isaac M. Ross, Ronald J. Proulx, Mark Karpenko
  • Publication number: 20230030549
    Abstract: A hybrid edge termination structure and method of forming the same. The hybrid edge termination structure in accordance with the invention is based on a junction termination extension (JTE) architecture, but includes an additional Layer of guard ring (GR) structures to further implement the implantation of dopants into the structure. The hybrid edge termination structure of the invention has a three-Layer structure, with a top Layer and a bottom Layer each having a constant dopant concentration in the lateral direction, and a middle Layer consisting of a plurality of spatially defined alternating regions that exhibit the electrical properties of either the top or bottom layer. By including the second layer, a discretized varying charge profile can be obtained that approximates the varying charge profile obtained using tapered edge termination but with easier manufacturing and lower cost.
    Type: Application
    Filed: July 28, 2022
    Publication date: February 2, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, Mona A. Ebrish, Andrew D. Koehler, Alan G. Jacobs, Matthew A. Porter, Karl D. Hobart, Prakash Pandey, Tolen Michael Nelson, Daniel G. Georgiev, Raghav Khanna, Michael Robert Hontz
  • Publication number: 20230028020
    Abstract: Heterostructures include a layer of a two-dimensional material placed on a multiferroic layer. An ordered array of differing polarization domains in the multiferroic layer produces corresponding domains having differing properties in the two-dimensional material. When the multiferroic layer is ferroelectric, the ferroelectric polarization domains in the layer produce local electric fields that penetrate the two-dimensional material. The local electric fields modulate the charge carriers and carrier density on a nanometer length scale, resulting in the formation of lateral p-n or p-i-n junctions, and variations thereof appropriate for device functions.
    Type: Application
    Filed: September 28, 2022
    Publication date: January 26, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Berend T. Jonker, Connie H. Li, Kathleen M. McCreary, Olaf M.J. van 't Erve
  • Publication number: 20230017695
    Abstract: A method of training a machine learning model to predict seafloor ripple geometry that includes receiving one or more input values, each input value based on an observation associated with ocean wave and seafloor conditions, and preprocessing the one or more input values. The method includes generating a training data set based on the preprocessed data set, splitting the training data set into a plurality of folds, and training via stacked generalization the machine learning model by performing a cross validation of each fold of training data based on at least one deterministic equilibrium ripple predictor model and on at least one machine learning algorithm. The method may include generating via the trained machine learning model, a set of one or more seafloor ripple geometry predictions, and performing Bayesian regression on the set of one or more seafloor ripple predictions to generate a probabilistic distribution of predicted seafloor ripple geometry.
    Type: Application
    Filed: June 28, 2022
    Publication date: January 19, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Ryan E. Phillip, Allison M. Penko
  • Publication number: 20230014134
    Abstract: Heterostructures include a layer of a two-dimensional material placed on a multiferroic layer. An ordered array of differing polarization domains in the multiferroic layer produces corresponding domains having differing properties in the two-dimensional material. When the multiferroic layer is ferroelectric, the ferroelectric polarization domains in the layer produce local electric fields that penetrate the two-dimensional material. The local electric fields modulate the charge carriers and carrier density on a nanometer length scale, resulting in the formation of lateral p-n or p-i-n junctions, and variations thereof appropriate for device functions.
    Type: Application
    Filed: September 28, 2022
    Publication date: January 19, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Berend T. Jonker, Connie H. Li, Kathleen M. McCreary, Olaf M.J. van 't Erve
  • Patent number: 11557872
    Abstract: Fiber optic amplification includes a photonic crystal fiber coupled to a pump laser through a first coupler. The pump laser emits a first electromagnetic radiation wave into the photonic crystal fiber at a first oscillation frequency and a second electromagnetic radiation wave into the photonic crystal fiber at a second oscillation frequency equaling the first oscillation frequency. The first and second electromagnetic radiation waves interact to generate a signal comprising an electromagnetic radiation wave at a third oscillation frequency and an idler comprising a fourth electromagnetic radiation wave at a fourth oscillation frequency to be generated and amplified through parametric amplification. Parametric amplification is achieved by four wave mixing. The photonic crystal fiber emits a parametric output signal based on the four wave mixing. A nonlinear crystal frequency doubles the parametric output signal through second-harmonic generation.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: January 17, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: L. Brandon Shaw, Rafael R. Gattass, Rajesh Thapa, Lynda E. Busse, Ishwar D. Aggarwal, Daniel L. Rhonehouse, Jasbinder S. Sanghera, Jason Auxier
  • Patent number: 11556683
    Abstract: A method and system for modeling fibrous composites. Initially, material properties are obtained for a model of a fibrous composite, where the model includes integration points and unit cells. For each integration point, composite level stresses and strains are determined based on the material properties, the composite level stresses and strains are decomposed into component level stresses and strains for the integration point, the component level stresses and strains are used to calculate failure quotients at the integration point, an appropriate material reduction model is applied at a component level based on the failure quotients to detect a component failure, the component failure is upscaled to determine updated material properties at a composite level, and the updated material properties are incorporated into the model. At this stage, a composite failure is detected based on the updated model.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: January 17, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joseph Darcy, Young Wuk Kwon
  • Patent number: 11554990
    Abstract: The invention provides filamentous organism-derived carbonaceous materials doped with organic and/or inorganic compounds, and methods of making the same. In certain embodiments, these carbonaceous materials are used as electrodes in solid state batteries and/or lithium-ion batteries. In another aspect, these carbonaceous materials are used as a catalyst, catalyst support, adsorbent, filter and/or other carbon-based material or adsorbent. In yet another aspect, the invention provides battery devices incorporating the carbonaceous electrode materials.
    Type: Grant
    Filed: October 8, 2020
    Date of Patent: January 17, 2023
    Assignees: The Regents of the University of Colorado, a body corporate, The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Zhiyong Ren, Mitchell Tyler Huggins, Justin C. Biffinger, Corey T. Love, Se-Hee Lee, Justin M. Whiteley
  • Patent number: 11542320
    Abstract: Described herein are nucleic acids encoding single-domain antibodies that might serve as alternatives to conventional monoclonal antibodies for either the detection or treatment of Chikungunya Virus (CHIKV).
    Type: Grant
    Filed: July 9, 2021
    Date of Patent: January 3, 2023
    Assignee: The Government of the United States of Americas, as represented by the Secretary of the Navy
    Inventors: Jinny Lin Liu, George P. Anderson, Ellen R. Goldman
  • Publication number: 20220410118
    Abstract: Materials for decontamination of compounds having a phosphorous-sulfur bond or a phosphorous-oxygen bond. A porous polymer, such as poly(dicyclopentadiene), contains particles of zirconium hydroxide. The polymer optionally has hydroperoxide groups.
    Type: Application
    Filed: August 25, 2022
    Publication date: December 29, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jeffrey G. Lundin, Christopher L. McGann, Spencer L. Giles, Grant Daniels, Robert B. Balow, Jorge L. Miranda-Zayas, James H. Wynne
  • Patent number: 11532478
    Abstract: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm?3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
    Type: Grant
    Filed: November 8, 2021
    Date of Patent: December 20, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, James C. Gallagher, Marko J. Tadjer, Alan G. Jacobs, Boris N. Feigelson
  • Patent number: 11525636
    Abstract: A loop heat pipe includes a reservoir, an evaporator adjacent to the reservoir, and a condenser including a condenser inlet and a condenser outlet. The loop heat pipe further includes a vapor transport line connecting the evaporator to the condenser inlet, a liquid transport line connecting the condenser outlet to the evaporator, and a vapor bypass joining the vapor transport line near the condenser inlet and joining the liquid transport line near the condenser outlet. The vapor bypass includes a vapor bypass housing. The vapor bypass housing includes a temperature. The loop heat pipe also includes a thermally-controlled connection between the vapor bypass housing and the condenser, and a thermal controller connected to the thermally-controlled connection and regulating the temperature of the vapor bypass housing via the thermally-controlled connection.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: December 13, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Timothy Holman, Dmitry K Khrustalev, Kwok Cheung
  • Publication number: 20220390553
    Abstract: A method for generating ultrawideband pulsed microwave signals from optical field ionization of a gas with an ultrashort laser pulse, where the amplitude and frequency of the signals can be controlled via the characteristics of the laser pulse and/or the gas. The center frequency of the spectrum of the microwave signal can be controlled by changing the laser pulse energy. The amplitude of the microwave signal can be controlled by changing the wavelength of the laser pulses. The amplitude and frequency of the microwave signal can be tuned by controlling the pressure of the gas medium. The location at which the microwave signal is generated can be controlled by controlling the location at which the laser pulse creates a plasma. Interference among microwave signals resulting from multiple laser-produced plasmas can be used to construct an ultrawideband microwave signal having a predetermined amplitude and frequency.
    Type: Application
    Filed: May 31, 2022
    Publication date: December 8, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Alexander C. Englesbe, Jennifer A. Elle, Andreas Schmitt-Sody, Travis M. Garrett