Patents Assigned to The Government of the United States of America as represented by the Secretary of the Navy
  • Publication number: 20220308026
    Abstract: An apparatus having: a container, a first openable vessel within the container, an analyte within the first vessel, and a vapochromic sensor within the container. The vapochromic sensor changes color on contact with a vapor of the analyte.
    Type: Application
    Filed: February 15, 2022
    Publication date: September 29, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Lauryn E. DeGreeff, Christopher J. Katilie, Janet Crespo-Cajigas
  • Patent number: 11447524
    Abstract: Disclosed herein is a cyclic peptide polymer. R1, R2, and R3 are organic groups. Each R4 is a covalent bond, methylene, ethylene, n-propylene, or n-butylene. Each X is —NH—, —O—, or —O—CO—. The values m and n are nonnegative integers having a sum of at least 1. The value p is an integer greater than 1. The cyclic peptide polymer may be made by providing a first cyclic peptide monomer having a protecting group on the X group, covalently binding the —CO—OH group of the first cyclic peptide monomer to a solid support having a carboxylic acid-reactive group, converting the protecting group to —XH, reacting the —XH group with the —CO—OH group of an additional cyclic peptide monomer, optionally repeating the converting and reacting steps with further additional cyclic peptide monomers, and cleaving the cyclic peptide polymer from the solid support.
    Type: Grant
    Filed: November 19, 2020
    Date of Patent: September 20, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Kenan P. Fears, Manoj K. Kolel-Veetil
  • Patent number: 11448824
    Abstract: A hyperbolic metamaterial assembly comprising alternating one or more first layers and one or more second layers forming a hyperbolic metamaterial, the one or more first layers comprising an intrinsic or non-degenerate extrinsic semiconductor and the one or more second layers comprising a two-dimensional electron or hole gas, wherein one of in-plane or out-of-plane permittivity of the hyperbolic metamaterial assembly is negative and the other is positive.
    Type: Grant
    Filed: March 21, 2016
    Date of Patent: September 20, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Michael A. Mastro
  • Publication number: 20220291552
    Abstract: An electro-optical liquid crystal cell comprising a first substrate, a first layer of chromium (Cr), a first layer of vertically aligned carbon nanotubes (VA-CNT) capped with nickel nanoparticles, and a layer of liquid crystal. Furthermore, the electro-optical liquid crystal cell can comprise a second layer of VA-CNT capped with nickel nanoparticles, a second layer of Cr, and a second substrate. This electro-optic VA-CNT-based liquid crystal cell exhibits the required electro-optic effect needed for a liquid crystal display.
    Type: Application
    Filed: November 15, 2021
    Publication date: September 15, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: Rajratan Basu
  • Patent number: 11443942
    Abstract: Described herein is a method for growing indium nitride (InN) materials by growing hexagonal and/or cubic InN using a pulsed growth method at a temperature lower than 300° C. Also described is a material comprising InN in a face-centered cubic lattice crystalline structure having an NaCl type phase.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: September 13, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Neeraj Nepal, Charles R. Eddy, Jr., Nadeemullah A. Mahadik, Syed B. Qadri, Michael J. Mehl
  • Patent number: 11433371
    Abstract: Materials for decontamination of compounds having a phosphorous-sulfur bond or a phosphorous-oxygen bond. A porous polymer, such as poly(dicyclopentadiene), contains particles of zirconium hydroxide. The polymer optionally has hydroperoxide groups.
    Type: Grant
    Filed: March 22, 2019
    Date of Patent: September 6, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jeffrey G. Lundin, Christopher L. McGann, Spencer L. Giles, Grant Daniels, Robert B. Balow, Jorge L. Miranda-Zayas, James H. Wynne
  • Publication number: 20220270891
    Abstract: A method for locally annealing and crystallizing a thin film by directing ultrashort optical pulses from an ultrafast laser into the film. The ultrashort pulses can selectively produce an annealed pattern and/or activate dopants on the surface or within the film.
    Type: Application
    Filed: March 29, 2022
    Publication date: August 25, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Marc Currie, Virginia D. Wheeler
  • Patent number: 11421331
    Abstract: Apparatus for seawater acidification including an ion exchange, cathode and anode electrode compartments and cation-permeable membranes that separate the electrode compartments from the ion exchange compartment. Means is provided for feeding seawater through the ion exchange compartment and for feeding a dissociable liquid media through the anode and cathode electrode compartments. A cathode is located in the cathode electrode compartment and an anode is located in the anode electrode compartment and a means for application of current to the cathode and anode is provided. A method for the acidification of seawater by subjecting the seawater to an ion exchange reaction to exchange H+ ions for Na+ ions. Carbon dioxide may be extracted from the acidified seawater. Optionally, the ion exchange reaction can be conducted under conditions which produce hydrogen as well as carbon dioxide. The carbon dioxide and hydrogen may be used to produce hydrocarbons.
    Type: Grant
    Filed: April 4, 2016
    Date of Patent: August 23, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Felice DiMascio, Dennis R. Hardy, M. Kathleen Lewis, Heather D. Willauer, Frederick Williams
  • Patent number: 11420083
    Abstract: A composition having water and first and second surfactants having the formulas below. The values m and y are non-negative integers, and n and x are positive integers. R is a zwitterionic group. R? is a siloxane group. A foam of the composition may be used to extinguish a fire.
    Type: Grant
    Filed: January 6, 2022
    Date of Patent: August 23, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Ramagopal Ananth, Arthur W. Snow, Spencer L. Giles, Matthew Davis, Katherine Hinnant
  • Patent number: 11424050
    Abstract: A composite material with enhanced electrical conductivity. The composite material includes two distinct phases. The first distinct phase is an excluded volume phase that includes an electrical insulator. The second distinct phase, a conductor phase, is a composite including an electrically insulating matrix and an embedded conductor phase that has sufficient concentration to exceed a percolation threshold within the conductor phase.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: August 23, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Claudia Catalina Luhrs, Dragoslav Grbovic, Jonathan Phillips, Brian Christopher Earp
  • Publication number: 20220263568
    Abstract: A method including configuring, an Iridium antenna of a deck box device, to receive satellite communications based in the L band frequency range, establishing a point-to-point connection with an L-band satellite communication device via a gateway device, the L-hand satellite communication device configured to receive sampled data from one or more sampling devices and receiving, by the Iridium antenna, one or more data messages from a respective sampling device via the established point-to-point connection. The method including parsing the Short Burst Data packets of each data message to retrieve the sampled data, converting, the retrieved sampled data from each respective data message into a common format, determining, one or more characteristics associated with the converted sampled data, generating a visualization based on the one or more determined characteristics, and actuating a strategic operation associated with the one or more sampling devices based on the generated visualization.
    Type: Application
    Filed: February 18, 2022
    Publication date: August 18, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Blake J. Landry, Adam Trahan, Samuel Bateman, Charles R. Key
  • Patent number: 11418213
    Abstract: Systems and methods are provided for reducing error in data compression and decompression when data is transmitted over low bandwidth communication links, such as satellite links. Embodiments of the present disclosure provide systems and methods for variable block size compression for gridded data, efficiently storing null values in gridded data, and eliminating growth of error in compressed time series data.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: August 16, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventor: John T. Sample
  • Patent number: 11415518
    Abstract: A method for mapping and analyzing a GaN substrate to identify areas of the substrate suitable for fabrication of electronic devices thereon. Raman spectroscopy is performed over the surface of a GaN substrate to produce maps of the E2 and A1 peaks at a plurality of areas on the substrate surface, the E2 and A1 peaks being associated with known concentrations of defects and charge carriers, so that areas of the GaN substrate having relatively high resistivity or conductivity which make those areas suitable or unsuitable for fabrication of electronic devices can be identified. The devices can then be fabricated only on suitable areas of the substrate, or the size of the devices can be tailored to maximize the yield of devices fabricated thereon. Substrates not meeting a threshold level of defect and/or charge carrier concentration can be discarded without fabrication of poor-quality devices thereon.
    Type: Grant
    Filed: June 19, 2020
    Date of Patent: August 16, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, Jennifer K. Hite, James C. Gallagher, Karl D. Hobart
  • Publication number: 20220254639
    Abstract: A method for activating implanted dopants and repairing damage to dopant-implanted GaN to form n-type or p-type GaN. A GaN substrate is implanted with n- or p-type ions and is subjected to a high-temperature anneal to activate the implanted dopants and to produce planar n- or p-type doped areas within the GaN having an activated dopant concentration of about 1018-1022 cm?3. An initial annealing at a temperature at which the GaN is stable at a predetermined process temperature for a predetermined time can be conducted before the high-temperature anneal. A thermally stable cap can be applied to the GaN substrate to suppress nitrogen evolution from the GaN surface during the high-temperature annealing step. The high-temperature annealing can be conducted under N2 pressure to increase the stability of the GaN. The annealing can be conducted using laser annealing or rapid thermal annealing (RTA).
    Type: Application
    Filed: January 26, 2022
    Publication date: August 11, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Travis J. Anderson, James C. Gallagher, Marko J. Tadjer, Alan G. Jacobs, Boris N. Feigelson
  • Publication number: 20220251322
    Abstract: An article having: an elastomeric jacket; a gel within the jacket; and a plurality of gas-filled, polymerically-encapsulated microbubbles suspended in the gel. The microbubbles have a Gaussian particle size distribution. The largest microbubble has a diameter at least 10 times the diameter of the smallest microbubble. The article may exhibit Anderson localization at at least one frequency of sound waves impacting the article.
    Type: Application
    Filed: January 25, 2022
    Publication date: August 11, 2022
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Bernard R. Matis, Nicholas T. Gangemi, Jeffrey W. Baldwin, Steven W. Liskey, Aaron D. Edmunds, William B. Wilson, Douglas M. Photiadis
  • Patent number: 11412617
    Abstract: An apparatus for interfacing with an RF/microwave subsystem is provided. The apparatus includes a printed circuit board that includes: a controller, and a connector constructed to provide control signals and power signals to a subsystem in accordance with instructions from the controller, and a mechanical interface constructed to provide a mechanical connection between the subsystem and the printed circuit board.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: August 9, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Thomas Petelik, Steven Bode, Matthew Anderson
  • Patent number: 11408961
    Abstract: Systems and methods are provided for sensing acoustic signals using a floating base vector sensor. A vector sensor according to an embodiment of the present disclosure can be used to detect and characterize low frequency sound wave(s) in a viscous medium (e.g., air, water, etc.) by detecting a periodic motion of the media particles associated with the sound wave(s). The orientation of the particle velocity deduced from such measurements can provide information regarding the wave vector of the sound wave(s), can define the direction of arrival (DOA) for the acoustic signal, and can assist locating the source of the sound of interest.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: August 9, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Maxim K. Zalalutdinov, Douglas M. Photiadis, Joseph A. Bucaro, Brian H. Houston
  • Patent number: 11406997
    Abstract: An apparatus having: a vessel for containing a suspension of a liquid and solid particles; a tube having a narrowed portion to draw the suspension from the vessel into the tube when a gas flows through the tube; an aerosol generator coupled to the tube for forming an aerosol from the suspension; a dehydrator coupled to the aerosol generator for removing the liquid from the aerosol forming a dried aerosol; a multiple-pass spectroscopic absorption cell coupled to the dehydrator to pass the dried aerosol into the absorption cell; and a Fourier transform spectrometer coupled to the absorption cell to measure an absorption spectrum of the dried aerosol.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: August 9, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Jake Fontana, Jawad Naciri
  • Patent number: 11404280
    Abstract: Methods and apparatuses for the production of HF in an electron-beam generated plasma. A gas containing fluorine, hydrogen, and an inert gas such as argon, e.g., Ar/SF6/H2O or Ar/SF6/NH3 flows into a plasma treatment chamber to produce a low pressure gas in the chamber. An electron beam directed into the gas forms a plasma from the gas, with energy from the electron beam dissociating the F-containing molecules, which react with H-containing gas to produce HF in the plasma. Although the concentration of the gas phase HF in the plasma is a very small fraction of the total gas in the chamber, due to its highly reactive nature, the low concentration of HF produced by the method of the present invention is enough to modify the surfaces of materials, performing the same function as aqueous HF solutions to remove oxygen from an exposed material.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: August 2, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: David R. Boris, Scott G. Walton
  • Patent number: 11404591
    Abstract: An infrared detector and a method for forming it are provided. The detector includes absorber, barrier, and contact regions. The absorber region includes a first semiconductor material, with a first lattice constant, that produces charge carriers in response to infrared light. The barrier region is disposed on the absorber region and comprises a superlatice that includes (i) first barrier region layers comprising the first semiconductor material, and (ii) second barrier region layers comprising a second semiconductor material, different from, but lattice matched to, the first semiconductor material. The first and second barrier region layers are alternatingly arranged. The contact region is disposed on the barrier region and comprises a superlattice that includes (i) first contact region layers comprising the first semiconductor material, and (ii) second contact region layers comprising the second semiconductor material layer. The first and second contact region layers are alternatingly arranged.
    Type: Grant
    Filed: July 29, 2019
    Date of Patent: August 2, 2022
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Edward H. Aifer, Jerry R. Meyer, Chadwick Lawrence Canedy, Igor Vurgaftman, Jill A. Nolde